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ABSTRACT 

Biogeography-based optimization (BBO) is a new population-based evolutionary algorithm and 

one of meta-heuristic algorithms. This technique is based on an old mathematical study that 

explains the geographical distribution of biological organisms. The first original form of BBO 

was introduced in 2008 and known as a partial migration based BBO. Few months later, BBO 

was re-introduced again with additional three other forms and known as single, simplified 

partial, and simplified single migration based BBOs. Then a lot of modifications were employed 

to enhance the performance of BBO. However, the literature lacks the explanations and the 

reasons on which the modifications are based on. This paper tries to clarify this issue by making 

a comparison between the four original BBO algorithms through a variety of benchmark 

functions with different dimensions and complexities. The results show that both single and 

simplified single migration based BBOs are faster, but have less performance as compared to 

the others. The comparison between the partial and the simplified partial migration based BBOs 

shows that the preference depends on the population size, problem’s complexity and dimensions 

and the values of the upper and lower side constraints. The partial migration model wins when 

these factors, except population size, are increased, and vice versa for the simplified partial 

migration model. The results can be used as a foundation and a first step of modification for 

enhancing any proposed modification on BBO including the existing modifications that are 

described in literature. 
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1. INTRODUCTION 

The science of biology becomes one of the main resources of inspiration to develop the modern 

optimization techniques, such as ant colony optimization (ACO), bee colony optimization (BCO), 

wasp swarm optimization (WSO), bacterial foraging optimization (BFO), genetic algorithm 

(GA), evolutionary strategy (ES), differential evolution (DE), particle swarm optimization (PSO), 

etc. Biogeography-based optimization (BBO) is a new population-based evolutionary algorithm 

(EA) that was introduced by Dan Simon in 2008 [1], and its performance was evaluated based on 

14 benchmark functions, and then was tested to solve a real sensor selection problem for aircraft 

engine health estimation. BBO did well and proved that it is a very competitive method as 

compared to the other EAs. Since then, a lot of researches have been conducted, some of them to 
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solve practical problems such as economic emission load dispatch [20], land cover feature 

extraction [21], and unit commitment [22]; while the others were focused to enhance and modify 

its performance [23,24,25,26,27,29,33]. 

The objective of this paper is to outline a clear path for selecting the best algorithm among the 

four original forms, and thus, any present modification with wrong selected form can be reviewed 

again with this guidance to enhance its performance. In addition, it can be used as a foundation 

for any future modification. 

This paper is organized as follows: Section II gives a quick introduction about the theory of island 

biogeography to be as a strong basis to understand the principles of the original BBOs which are 

described in Section III; after that, Section IV gives a comparison between the original forms of 

BBO. Section V is set for the conclusions. 

2. THE THEORY OF ISLAND BIOGEOGRAPHY 

Biogeography is a branch of biology, and it is a synthetic discipline, relying heavily on theory 

and data from ecology, population biology, systematics, evolutionary biology, and the earth 

sciences [4]. Biogeography seeks to describe, analyze and explain the geographic patterns and 

changing distributions of ecosystems and fossil species of plants (flora) and animals (fauna) 

through geological space and time [5, 6].  

Island, in biogeography, is any area of suitable habitat (local environment occupied by an 

organism [7]) surrounded by an expense of unsuitable habitat and is endowed with exceptionally 

rich reservoirs of endemic, exclusive, strange and relict species [8]. Islands as ecological systems 

have such salient features as simple biotas, varying combinations of biotic and abiotic factors, 

and variability in isolation, shape, and size [9,14]. With these characteristics, islands represent 

themselves as natural experiments, and got highly attentions by the nineteenth century naturalists 

of the first rank, such as Alfred R. Wallace in East Indies [10], Charles Darwin in Galapagos 

Islands [11] and Joseph D. Hooker in Southern Ocean [12]. 

Island biogeography is a special field within biogeography science. This field was initially started 

by the ecologists Robert H. MacArthur and Edward O. Wilson in 1960 to 1963 with their 

published paper [2], and continued their studies till 1967 when the final achievement were 

presented in [3]; and recently, this theory has been revisited and expanded more in [13]. 

Island biogeography theory fully integrates much of ecology, population biology, evolution, and 

paleontology, with important implications for conservation of species [13]. It was developed with 

mathematical models for attempting to translate the ecology and biogeography from the 

traditional view to analytical view, and answering why some islands are rich of species while the 

others are poor, by establishing and explaining the biotic (like predation, competition and 

interactions between species) and abiotic (like wind, water, sunlight, temperature, pressure and 

soil) factors that affect the species richness of natural communities in an island [15]. Thus, it gives 

the ability to predict the species counts that migrate between islands and then can find the 

optimum conservation areas [4,5,6,8]. 

The equilibrium theory of island biogeography proposes that the number of inhabited species on 

an island is based on the dynamic equilibrium between new immigrated species onto an island 

and the extinct species out from that island [2,3,13]. 

Fig. 1 graphically represents the equilibrium model with exponential immigration (or speciation) 

rate λ and emigration (or extinction) rate µ, where they can also be plotted as a logistic, linear or 

any proper function [4,16,17], while the equilibrium location will be shifted to the right or left 



123 Computer Science & Information Technology (CS & IT)  

based on the type of rate functions, the island's area and/or the distance (isolation) between the 

source and recipient islands [4,3,13].  

 

Figure 1. Equilibrium model of a biota of a single island 

 I and E are the maximum possible immigration and emigration rates, respectively. �̂� is the 

number of species at equilibrium,  �̂� is the species turnover rate at equilibrium, and 𝑆𝑚𝑎𝑥 is the 

maximum number of species on that island. 

I occurs when there is no colonization process, or in other word, the island is empty of any species 

and it will offer maximum opportunity to the species on the other islands for immigrating to settle 

on it; and as the number of arrived species on that island increases, the opportunity for settlement 

will decrease and thus the immigration rate will decrease too. Also, as λ decreases, the species 

density increases, so the predation, competition and parasitism factors will increase; and as a 

result, the emigration rate µ will increase, and reaches its maximum value E when λ reaches its 

minimum value [18].  

MacArthur and Wilson [2,3] simplified the exponential model to be as a linear function, where 

I=E as shown in Fig. 2 with mathematical expressions in order to theoretically explain how the 

migration process on a single island happens. 

Now, let at time t, the recipient island has S species with probability 𝑃𝑠(𝑡), and 𝜆𝑠 and 𝜇𝑠 are 

respectively the immigration and emigration rates at the present of S species on that island. Then 

the variation from 𝑃𝑠(𝑡) to 𝑃𝑠(𝑡 + ∆𝑡 ) can be described as: 
 

        𝑃𝑠(𝑡 + ∆𝑡 ) = 𝑃𝑠(𝑡)(1 − 𝜆𝑠∆𝑡 − 𝜇𝑠∆𝑡 ) + 𝑃𝑠−1(𝑡)𝜆𝑠−1∆𝑡 + 𝑃𝑠+1(𝑡)𝜇𝑠+1∆𝑡       (1) 

Also, �̂� can be found by using different methods. From the basic of trigonometry: 

�̂�

�̂�
=

𝐸

𝑆𝑚𝑎𝑥
  ⇒   �̂� =

𝐸

𝑆𝑚𝑎𝑥
�̂�  (2) 

�̂�

(𝑆𝑚𝑎𝑥 − �̂�)
=

𝐼

𝑆𝑚𝑎𝑥
  (3) 
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Figure 2. Simplified equilibrium model of a biota of a single island 

Substituting Eq. 2 in Eq. 3 for �̂�: 

�̂� = (
𝐼

𝐼 + 𝐸
)𝑆𝑚𝑎𝑥  (4) 

Eq. 4 can also be obtained by equalizing 𝜆𝑠 and 𝜇𝑠 rates at �̂� as follows: 

𝜇𝑠 =
𝐸

𝑆𝑚𝑎𝑥
𝑆  (5) 

𝜆𝑠 = 1 − 𝜇𝑠 = 𝐼 (1 −
𝑆

𝑆𝑚𝑎𝑥
)  (6) 

𝑎𝑡 𝑆 = �̂�:    𝜆𝑠 = 𝜇𝑠    ⇒    𝐼 (1 −
�̂�

𝑆𝑚𝑎𝑥
) =

𝐸

𝑆𝑚𝑎𝑥
�̂�  (7) 

Solving Eq. 7 for �̂� gives Eq. 4; where at the intersection point, the island's biota will be at a state 

of dynamic equilibrium, and thus 𝑃𝑠(𝑡 + ∆𝑡) = 𝑃𝑚𝑎𝑥[1,3,17].  

From Eq. 1, to have S at time (𝑡 + ∆𝑡), one of the following three conditions should hold: 

1. S species at time t, and no immigration or emigration took place during the interval ∆𝑡; 

2. (S - 1) species at time t, and one species immigrated; 

3. (S + 1) species at time t, and one species emigrated. 

To neglect the probability of more than one immigration or emigration, then ∆𝑡 has to be set with 

small value. As ∆𝑡 approaches 0, the ratio (
∆𝑃𝑠

∆𝑡
) approaches �̇�𝑠(𝑡): 

𝑑𝑃𝑠(𝑡)

𝑑𝑡
≅ lim

∆𝑡→0

𝑃𝑠(𝑡+∆𝑡)−𝑃𝑠(𝑡)

∆𝑡
  

𝑑𝑃𝑠(𝑡)

𝑑𝑡
≅ −(𝜆𝑠 + 𝜇𝑠)𝑃𝑠(𝑡) + 𝜆𝑠−1𝑃𝑠−1(𝑡) + 𝜇𝑠+1𝑃𝑠+1(𝑡)     

 

(8) 
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By considering the previous three conditions, Eq. 8 becomes: 

          𝑃�̇�(𝑡) = {

−(𝜆𝑠 + 𝜇𝑠)𝑃𝑠 + 𝜇𝑠+1𝑃𝑠+1,                             𝑆 = 0                      

−(𝜆𝑠 + 𝜇𝑠)𝑃𝑠 + 𝜆𝑠−1𝑃𝑠−1 + 𝜇𝑠+1𝑃𝑠+1,      1 ≤ 𝑆 ≤ 𝑆𝑚𝑎𝑥 − 1

−(𝜆𝑠 + 𝜇𝑠)𝑃𝑠 + 𝜆𝑠−1𝑃𝑠−1,                            𝑆 = 𝑆𝑚𝑎𝑥                

         (9)  

 

The value of 𝑃�̇�(𝑡) can also be determined by using a matrix technique [1]. 

Thus, using the known values of 𝑃𝑠(𝑡) and 𝑃�̇�(𝑡), the value of 𝑃𝑠(𝑡 + ∆𝑡 ) given in Eq. 1 can be 

approximated as: 

𝑃𝑠(𝑡 + ∆𝑡 ) ≅ 𝑃𝑠(𝑡) + 𝑃�̇�(𝑡)∆𝑡     (10) 

 

Eq. 10 is the final form that has to be used in the program of BBO for calculating 𝑃𝑠(𝑡 + ∆𝑡 ). 

For finding 𝑃𝑠(𝑡), Dan Simon in [1] used two methods; either by solving Eq. 9 numerically, or by 

applying the following theorem: 

Theorem 1: The steady-state value for the probability of the number of each species is given by: 

 

                          

                                                           (11) 

Where 𝑣 and 𝑣𝑖 are computed as: 

𝑣 = [𝑣1, 𝑣2, … , 𝑣𝑆𝑚𝑎𝑥+1]
𝑇 (12) 

𝑣𝑖 =
𝑆𝑚𝑎𝑥!

(𝑆𝑚𝑎𝑥 + 1 − 𝑖)! (𝑖 − 1)!
          (𝑖 = 1,… , 𝑆𝑚𝑎𝑥 + 1) (13) 

   

3. BIOGEOGRAPHY-BASED OPTIMIZATION (BBO) 

The involvement of the science of biogeography into BBO is that the general problem solution 

means the natural distribution of species [1]. Each island represents one solution, where the good 

solution in biogeography means that the island has many species, and the density of these species 

depends on the availability of good features offered by that island (the good things of biotic 

"living: trees, shrubs, meadow, diversity of prey, etc" and abiotic "non-living: wind, temperature, 

humidity, water, area, etc" factors [19] - as described in section II), and vice versa for the poor 

solution islands [18]. Each feature is called suitability index variable (SIV), and represents the 

independent variable of such a problem in BBO [30]. 

Island suitability index (ISI) depends on the availability of those features on that island; and, in 

BBO, ISI is the dependent variable [30]. Thus, for problem with n-independent variables and k-

islands or individuals, then it can be expressed as: 

𝐼𝑆𝐼𝑖 = 𝑓(𝑆𝐼𝑉1, 𝑆𝐼𝑉2, … , 𝑆𝐼𝑉𝑛)      𝑖 = 1,2,… , 𝑘 (14) 
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The algorithm of BBO consists of two main sub-algorithms, migration and mutation. 

The original forms of BBO depend on the type of the migration process, which are partial 

migration based (PMB-BBO), single migration based (SMB-BBO), simplified partial migration 

based (SPMB-BBO), and simplified single migration based (SSMB-BBO) [1,28].  

3.1. Migration 

Considering Eq. 14, the high ISI for island i represents a good solution, and also high ISI means 

large number of available species on that island, which forces immigration rate 𝜆𝑠 to be low and 

emigration rate 𝜇𝑠 to be high; while low ISI for island i represents a poor solution, which means 

a shortage indication in the availability of species on that island, where at this condition 𝜆𝑠 is high 

and 𝜇𝑠 is low.  

Referring to Fig. 2, S1 is located before �̂�, where 𝜆𝑠 is high, 𝜇𝑠 is low and the solution ISI1 is poor; 

while S2 is located after �̂�, where 𝜆𝑠 is low, 𝜇𝑠 is high and the solution ISI2 is good. Thus, 𝜆𝑠 and 

𝜇𝑠 are indications of poor and good solutions, respectively. 

In migration process, the high ISI islands share their features to modify the low ISI islands, where 

the islands of both sides are probabilistically selected. The high ISI islands become the source of 

modification, while the low ISI islands become the recipients to those emigrated species.  

Although the species will emigrate from the rich islands to the poor islands, this phenomena does 

not mean that the species will completely disappear from its home islands. However, only a few 

representatives emigrate [1]. Thus, the recipient islands are enhanced, and at the same time the 

source islands are kept away from any shortage on its richness of species. 

The migration process of the four original forms of BBO can be described as:- 

3.1.1. PMB-BBO Model: 

 

Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

For each SIV s (where s=1,2,3,…,n) 

 Use 𝜆𝑖 to probabilistically select the immigrating island ISIi 

If rand < 𝜆𝑖 

  For j=1 to k 

Use 𝜇𝑗 to probabilistically decide whether to emigrate to ISIi 

   If ISIj is selected 

Randomly select an SIV σ from ISIj 

Replace a random SIV s in ISIi with SIV σ 

   end if 

  end for 

end if 

 next SIV  

next island 
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3.1.2. SMB-BBO Model: 

 

Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

Use 𝜆𝑖 to probabilistically select the immigrating island ISIi 

 If rand < 𝜆𝑖 

Pick a random SIV s (where s=1,2,3,…,n)  

For j=1 to k 

  Use 𝜇𝑗 to probabilistically decide whether to emigrate to ISIi 

  If ISIj is selected 

Randomly select an SIV σ from ISIj 

Replace a random SIV s in ISIi with SIV σ 

  end if 

end for 

 end if 

next island 

 

 

The simplified models (SPMB and SSMB) are similar to the previous normal models (PMB and 

SMB), except that the simplified models will always use the best obtained solution as the 

emigrating island instead of doing an internal loop checking. It is apparent that the simplified 

models have two conflicting issues. They are faster (less CPU time) because the internal looping 

is eliminated. However, they could trap in a local minima because they always depend on the best 

solution, and consequently the probability of finding other better solutions reduces.  

 

3.1.3. SPMB-BBO Model: 

 

Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

For each SIV s (where s=1,2,3,…,n) 

 Use 𝜆𝑖 to probabilistically select the immigrating island ISIi 

 If rand < 𝜆𝑖 

Select the best obtained solution as the emigrating island ISIbest 

If ISIbest is selected 

  Randomly select an SIV σ from ISIbest 

  Replace a random SIV s in ISIi with SIV σ 

end if 

 end if 

next SIV  

next island 
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3.1.4. SSMB-BBO Model: 

 

Let ISIi denote the ith population member and contains n features 

For each island ISIi (where i=1,2,3,…,k) 

Use 𝜆𝑖 to probabilistically select the immigrating island ISIi 

If rand < 𝜆𝑖 

 Pick a random SIV s (where s=1,2,3,…,n)  

 Select the best obtained solution as the emigrating island ISIbest    

 If ISIbest is selected 

Randomly select an SIV σ from ISIbest 

Replace a random SIV s in ISIi with SIV σ 

 end if  

end if 

next island

 

 

3.2. Mutation 

The features available on an island (i.e., n-SIV) can be changed dramatically due to random events 

called mutations [31], which forces �̂� to deviate from its equilibrium value [1].  

Most observed mutations are harmful, like predators from other islands, tsunamis, volcanos, 

diseases or earthquakes, which are not directed to be useful [17]. On the other hand, there are 

some useful events that can enhance those n-SIV to give better solutions, such as wind-carrying 

seeds (wind pollination) or flotsams (shipwreck) [18]. 

In BBO, this mutation process is modeled as SIV mutation, where the mutation rate m can be 

determined by involving species count probabilities Ps into the following equation: 

𝑚 = 𝑚𝑚𝑎𝑥 (1 −
𝑃𝑠
𝑃𝑚𝑎𝑥

)   (15) 

Where 𝑃𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑃𝑠) and 𝑚𝑚𝑎𝑥 is a user-defined maximum mutation rate that m can reach. 

From Eq. 15, m reaches to its minimum "zero" at the maximum value of Ps, and vice versa. Thus, 

m is inversely proportional to Ps.  

The objective of using mutation rate is to set the low and high ISI solutions likely to mutate, which 

gives them an ability to enhance their results more than what they already have, where the 

solutions at the equilibrium point are not mutated [1]. 

The mutation process can be described as: 

 

For 𝑖 = 1 to k   (where k is the number of islands, see Eq. 14) 

Calculate probability Ps based on 𝜆𝑠 and 𝜇𝑠 (by numerical or direct method)  

Calculate mutation rate m (using Eq. 15) 

Select ISIi with probability proportional to Ps 
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If ISIi is selected 

 Replace SIV of ISIi with a randomly generated SIV 

end if 

end for 

 

 

3.3. BBO Algorithm 

The steps of the general BBO algorithm can be listed as: 

1. Initialize the BBO parameters (Smax, I, E, mmax, etc). 

2. Find species count probabilities Ps and mutation rate m based on the calculated 

immigration rate 𝜆𝑠 and emigration rate 𝜇𝑠 by Eqs. 5 and 6. 

3. Generate k random islands, where each island represents one solution to a given 

problem with n-SIV.  

4. Sort the solutions k-ISI for all islands, so the first best solution should be mapped 

with the highest number of species and the highest emigration rate 𝜇𝑠 (or the lowest 

immigration rate 𝜆𝑠), and continue the descending order till reaching to the worst 

solution. 

5. Do elitism process for saving the required best solutions for the next generation; it 

is an optional step [30].     

6. Probabilistically select the source islands based on 𝜇
𝑠
, and the islands which need 

to be modified "the recipient islands" based on 𝜆𝑠, and do the migration process. 

Then, update all k-ISI before ending this step.  

7. Do mutation process for the islands based on their probabilities that are listed in the 

probability vector after calculated in step (2). Then, update all k-ISI once the 

mutation process is completed. 

8. Return to step (4) for the next iteration. This loop can be terminated either if 

reaching to an acceptable tolerance or after completing the desired number of 

generations. 

 

4. PERFORMANCE COMPARISON 

The main problem associated with all the modified BBOs is that the modifications were done on 

an arbitrary selected form of the four original forms. There is no clarification on which form the 

proposed modification stands on and why. 

The four original forms of BBO have been tested through 23 benchmark functions with different 

dimensions and complexities.  

These functions can be classified into three groups: unimodal, multimodal with few local minima 

and multimodal with many local minima. Functions f01-f13 are high-dimensional problems. 

Functions f01-05 and f07 are high-dimensional and unimodal, f06 is a high-dimensional step 

function with one discontinuous minimum. Functions f08-13 are high-dimensional and 

multimodal with many local minima, and the remaining functions are low-dimensional and 
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multimodal with few local minima [33]. The details of these benchmark functions can be found 

in the Appendix. 

The parameters that have been used here are similar to those used in [25,29]: population size of 

50, I=E=1, mmax=0.01, generation limit of 20,000 for f01-13 and 1000 for f14-23, elitism 

parameter of 1, and Monte-Carlo simulation with 30 trails. 

Table 1 summarizes the performance of PMB, SMB, SPMB and SSMB models for 23 benchmark 

functions. The highlighted cells in the tables represents the best result among the four BBO 

algorithms. It can be clearly seen that the performance of PMB and SPMB are superior as 

compared to SMB and SSMB. For high-dimensional problems, PMB wins with 7 best solutions, 

10 mean and 8 standard deviation out of 13; while SPMB wins with 6 best solutions, 3 mean and 

5 standard deviation. On the other hand, for low-dimensional problems, SSMB enters this 

competition, and gives better Best, Mean and Standard deviation than that of the PMB for the 

functions f16,f17,f18, but it does not win as compared to SPMB. Single and simplified single 

migration based models are not valid for f21-23, because these problems are 1-dimensional 

problems, and the migration process is done within only one independent variable. 

Although, in overall, SSMB has respectively the first and second worst performance for high and 

low-dimensional problems, it achieved the fastest algorithm as shown in Table 2. This is logical, 

because of two reasons. First, it does a migration on one randomly selected SIV for each island 

rather than all n-SIV as in PMB and SPMB. Second, it will always select the best found solution 

as a source island for migration instead of doing a loop checking as in SMB. This is why the 

simplified versions of PMB and SMB trip in local minima particularly as the complexity, side 

constraints and/or dimensions increases and as the number of islands or population size decreases. 

In this situation, PMB has the best exploration and exploitation. 

 

Table 1: Comparison of the results for 30 trails of the original four BBO models, where Best, 

Mean, and StdDev stands for the smallest error, the mean of all errors, and the standard 

deviation, respectively.  

 

Best Mean StdDev Best Mean StdDev Best Mean StdDev Best Mean StdDev

f01 30 1.8518E+00 3.8843E+00 1.3964E+00 1.6999E+02 3.1652E+02 9.9742E+01 2.2588E+00 4.3027E+00 1.3073E+00 8.1588E+01 3.5592E+02 1.5209E+02

f02 30 4.0024E-01 7.0184E-01 1.3458E-01 3.8978E+00 6.1515E+00 1.3348E+00 5.1678E-01 7.6268E-01 1.0545E-01 5.4535E+00 7.3952E+00 1.1782E+00

f03 30 4.2433E+02 1.9527E+04 1.1268E+04 3.3679E+03 3.0638E+04 1.3227E+04 1.9048E+03 3.2307E+04 8.3231E+03 4.4645E+02 2.7268E+04 1.4724E+04

f04 30 3.2007E+00 6.2387E+00 1.1469E+00 2.3978E+01 3.4745E+01 6.0946E+00 2.8725E+00 5.6856E+00 1.2431E+00 2.8262E+01 3.8791E+01 4.1634E+00

f05 30 1.0517E+02 2.6058E+02 7.9555E+01 5.0807E+03 2.3564E+04 1.6310E+04 1.3597E+02 2.7246E+02 1.1116E+02 7.4418E+03 3.9130E+04 3.2640E+04

f06 30 2.0000E+00 4.7333E+00 1.8245E+00 1.7400E+02 3.9163E+02 2.0465E+02 1.0000E+00 4.7667E+00 2.4315E+00 1.3900E+02 4.5263E+02 2.8296E+02

f07 30 2.8562E-07 1.2406E-06 1.2872E-06 7.6867E-04 1.2135E-02 1.4628E-02 1.9837E-07 1.3833E-06 1.1343E-06 1.0547E-03 1.3451E-02 1.4276E-02

f08 30 4.4291E-06 1.3876E-05 5.7466E-06 3.5004E-04 1.6463E-03 1.2669E-03 5.0828E-06 1.3322E-05 7.4610E-06 5.9656E-04 1.8382E-03 1.0377E-03

f09 30 9.4594E-01 1.9351E+00 6.4580E-01 2.3807E+01 3.3102E+01 5.6152E+00 1.0236E+00 1.9211E+00 5.7860E-01 2.6082E+01 3.4796E+01 6.4496E+00

f10 30 6.3026E-01 9.9236E-01 2.3065E-01 4.3719E+00 5.7651E+00 6.6010E-01 4.9817E-01 1.0345E+00 2.5990E-01 4.6872E+00 5.9257E+00 6.9267E-01

f11 30 8.6708E-01 1.0263E+00 3.4402E-02 2.1095E+00 4.4318E+00 1.3255E+00 9.4245E-01 1.0357E+00 2.7730E-02 2.1708E+00 5.0205E+00 1.9755E+00

f12 30 5.0934E-03 2.9591E-02 3.2559E-02 1.0493E+00 3.5616E+00 3.8957E+00 3.8794E-03 3.1228E-02 3.5340E-02 1.4325E+00 6.3746E+01 3.2648E+02

f13 30 9.3001E-02 1.6875E-01 6.0757E-02 5.3779E+00 3.1883E+03 1.3051E+04 8.1548E-02 2.0015E-01 8.0590E-02 6.9544E+00 2.3081E+03 8.1029E+03

f14 2 2.1720E-11 8.0558E-08 2.1865E-07 6.4942E-10 1.4595E-04 5.4076E-04 6.1392E-12 3.8090E-10 3.2748E-10 8.4939E-11 1.0718E-07 5.3020E-07

f15 4 3.9927E-04 8.0573E-04 3.2529E-04 5.6999E-04 1.3729E-03 4.5011E-04 1.8923E-04 7.0160E-04 3.1929E-04 4.5865E-04 1.3658E-03 5.8181E-04

f16 2 2.3455E-07 9.1217E-05 1.2481E-04 1.6640E-05 4.1018E-04 4.3907E-04 3.5869E-10 4.8485E-06 4.7243E-06 5.7770E-08 2.7089E-05 3.9141E-05

f17 2 5.6480E-07 9.6466E-05 1.6743E-04 3.6639E-06 3.4432E-04 3.9477E-04 1.2486E-07 1.9438E-05 2.7087E-05 4.4129E-07 7.3364E-05 9.1485E-05

f18 2 2.7778E-05 1.5749E-03 1.6278E-03 6.0816E-05 5.8628E-03 6.6169E-03 1.2784E-07 8.1736E-05 8.7004E-05 9.2851E-06 2.9315E-04 3.7882E-04

f19 3 7.6177E-06 5.0374E-04 3.8211E-04 2.5507E-04 1.6343E-03 1.2888E-03 5.9005E-07 5.0688E-05 5.9545E-05 1.6327E-06 5.2029E-04 4.9816E-04

f20 6 1.8781E-03 6.9158E-02 6.0706E-02 3.6659E-02 1.6534E-01 7.1746E-02 3.3727E-03 7.9192E-02 5.6884E-02 2.1696E-02 1.5974E-01 6.5199E-02

f21 1 9.8030E-08 2.8723E-05 4.2939E-05 3.8113E-09 3.3121E-05 6.0656E-05

f22 1 8.1958E-10 2.1546E-05 5.2185E-05 2.2393E-08 3.4060E-05 4.6055E-05

f23 1 1.7454E-08 7.4624E-05 1.8726E-04 1.0113E-07 3.7714E-05 5.3672E-05

For 1-dimensional problems, SMB-BBO 

is not applicable;

(SMB=PMB)

For 1-dimensional problems, SSMB-BBO 

is not applicable;

(SSMB=SPMB)

f # n
Biogeography Based Optimization (BBO)

Partial Migration Based Single Migration Based Simplified Partial Migration Based Simplified Single Migration Based



131 Computer Science & Information Technology (CS & IT)  

Table 2. Normalized CPU time for the high-dimensional problems f01-f13 

 

 

To verify this conclusion, three performance tests have been conducted as shown in Tables 3, 4 

and 5. Each one of these three tests is focused on one criteria. 

Test I is shown in Table 3, and it is used to study the performance of PMB and SPMB algorithms 

as the problem’s dimension decreases. The parameters used for this test are similar to that used 

in Table 1, except that the generation limit are set as: 1000 for n=2,4,6 ; 5000 for n=10 ; 10,000 

for n=20 and 20,000 for n=30. 

 

Table 3. Performance Test I – f05 with different dimensions  

 
 

Whereas, Test II shown in Table 4 is used to study the performance of PMB and SPMB algorithms 

as the number of islands or population size increases for two of low-dimensional problems. 

Finally, Test III shown in Table 5 is used to study the performance of PMB and SPMB algorithms 

under different upper and lower values of the variable bounds (also known as domain, search 

space, side constraints, etc). 

As can be seen from Table 3, the SPMB perform better as the problem dimension decreases. But 

when the population size is not large, the PMB will performer better even for the low-dimensional 

problems, as shown in Table 4. From Table 5, if the problem search space is large, the PMB wins 

too. 

PMB-BBO SMB-BBO SPMB-BBO SSMB-BBO

f01 1.4804E+00 1.0084E+00 1.3181E+00 1.0000E+00

f02 1.4687E+00 1.0086E+00 1.3103E+00 1.0000E+00

f03 1.1672E+00 1.0082E+00 1.1104E+00 1.0000E+00

f04 1.5018E+00 1.0086E+00 1.3355E+00 1.0000E+00

f05 1.4717E+00 1.0074E+00 1.3133E+00 1.0000E+00

f06 1.4721E+00 1.0079E+00 1.3113E+00 1.0000E+00

f07 1.4089E+00 1.0070E+00 1.2769E+00 1.0000E+00

f08 1.4521E+00 1.0074E+00 1.2969E+00 1.0000E+00

f09 1.4621E+00 1.0068E+00 1.3041E+00 1.0000E+00

f10 1.4299E+00 1.0052E+00 1.2815E+00 1.0000E+00

f11 1.4256E+00 1.0070E+00 1.2876E+00 1.0000E+00

f12 1.3703E+00 1.0056E+00 1.2437E+00 1.0000E+00

f13 1.3878E+00 1.0021E+00 1.2505E+00 1.0000E+00

Avg CPU Time 1.4230E+00 1.0070E+00 1.2800E+00 1.0000E+00

f #
BBO Models

Best Mean StdDev Best Mean StdDev

f05a 2 5.0569E-06 3.0404E-04 2.9421E-04 1.1454E-06 4.3368E-04 7.0482E-04

f05b 4 2.6016E+00 1.3546E+02 1.0058E+02 3.8176E-01 3.0585E+01 3.2854E+01

f05c 6 4.5589E+01 8.1933E+02 7.3780E+02 4.0158E+01 8.3004E+02 7.5869E+02

f05d 10 2.8495E+01 2.1690E+02 1.8675E+02 7.1550E+01 2.4654E+02 1.7535E+02

f05e 20 8.7400E+01 3.3766E+02 2.4278E+02 1.3913E+02 3.5894E+02 4.0126E+02

f05f 30 1.0517E+02 2.6058E+02 7.9555E+01 1.3597E+02 2.7246E+02 1.1116E+02

Generalized 

Rosenbrock's 

Function

f # Name Dimensions
Biogeography Based Optimization (BBO)

Partial Migration Based Simplified Partial Migration Based
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Table 4. Performance Test II – f15 and f16 with different populations  

 
 

Table 5. Performance Test III – f11 with different side constraints  

 

 

Fig. 3 shows the curves of fitness functions of PMB, SMB, SPMB, and SSMB for the Schwefel’s 

problem 1.2 “f03”, Generalized Rosenbrock’s function “f05”, Generalized Rastrigin’s function  

 

     (a) 
 

     (b) 

 
     (c) 

 
     (d) 

Figure 3. Curves of fitness functions of PMB, SMB, SPMB, and SSMB for some selected 

functions. (a) f03, (b) f05, (c) f09, (d) f11 

Best Mean StdDev Best Mean StdDev

f15a 5 3.0566E-04 1.1017E-03 5.6436E-04 4.2186E-04 1.4561E-03 7.5693E-04

f15b 10 5.1379E-04 1.2970E-03 7.7744E-04 2.1192E-04 1.0605E-03 7.2553E-04

f15c 50 3.9927E-04 8.0573E-04 3.2529E-04 1.8923E-04 7.0160E-04 3.1929E-04

f15d 200 1.9935E-04 6.2320E-04 2.2726E-04 1.4958E-04 4.4200E-04 1.7749E-04

f16a 5 1.0557E-05 6.5798E-04 7.0515E-04 1.1389E-05 8.7138E-04 8.0479E-04

f16b 10 1.1365E-07 2.9963E-04 4.1067E-04 2.4790E-06 1.8534E-04 2.8880E-04

f16c 50 2.3455E-07 9.1217E-05 1.2481E-04 5.7770E-08 2.7089E-05 3.9141E-05

f16d 200 1.7238E-07 2.2757E-05 2.7229E-05 5.7634E-09 5.9924E-07 7.5759E-07

Kowalik's 

Function

Six-Hump Camel-

Back Function

f # Name
Population 

Size

Biogeography Based Optimization (BBO)
Partial Migration Based Simplified Partial Migration Based

Best Mean StdDev Best Mean StdDev

f11a Xi Є [- 60,60] 8.6106E-02 2.3591E-01 8.7067E-02 5.3899E-02 2.1482E-01 7.9380E-02

f11b Xi Є [- 600,600]8.7314E-01 1.2508E+00 2.3871E-01 9.6562E-01 1.3044E+00 2.2903E-01

f11c Xi Є [- 6000,6000]4.9293E+00 3.2079E+01 2.4023E+01 6.0255E+00 3.7802E+01 2.7235E+01

Generalized 

Griewank's 

Function

f # Name
Side 

Constraints

Biogeography Based Optimization (BBO)
Partial Migration Based Simplified Partial Migration Based
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“f09” and Generalized Griewank’s function “f11”. For functions f05,f09 and f11, it can be clearly 

seen that the PMB and SPMB algorithms outperform the SMB and SSMB algorithms, and the 

gap between the convergences is large. For the function f03, SSMB enters this competition and 

shows better fitness as compared to SPMB. However, the PMB algorithm is again has the best 

convergence. 

 

5. CONCLUSIONS AND SUGGESTIONS 

The performance of the four original forms of BBO algorithms (PMB, SMB, SPMB and SSMB) 

have been extensively tested and compared using 23 benchmark functions of different dimensions 

and complexities, as well as different scenarios have been done for some selected functions. The 

results show that the PMB, which is the first presented model in 2008, gives the best performance 

as the complexity, side constraints and/or dimensions of a given problem increases and as the 

number of islands or population size decreases. However, the PMB is found to be the slowest 

algorithm which requires around 42.30% more CPU time than that of the SSMB as shown in 

Table 2. To compromise between the cost and convergence speed under the above scenarios, 

SPMB is found to be the best choice as it requires around 28.00% more CPU time, but its 

exploration and exploitation will decrease significantly. The performance of the SMB algorithm 

found to be the worst as compared to the others. 

The results obtained in this paper can be used as a foundation and a first step for enhancing any 

prospective modification on the BBO algorithm including the existing modifications that are 

described in literature. 

 

 

APPENDIX 

This appendix includes a complete list that have been used in this paper. The details of these 

benchmark functions can be found in [32]. The global minimums of the functions (f08, 

f14, f15, f16, f17, f19, f20, and f21-f23) are rounded in [32]. In this paper, the correct 

values are taken instead from [34,35,36,37,38], respectively. 

f01: Sphere Model 

𝑓(𝑥) =∑𝑥𝑖
2

𝑛

𝑖=1

 

¶ −100 ≤ 𝑥𝑖 ≤ 100,      𝑖 = 1,2,… , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 
f02: Schwefel’s Problem 2.22 

𝑓(𝑥) =∑|𝑥𝑖|

𝑛

𝑖=1

+∏|𝑥𝑖|

𝑛

𝑖=1

 

¶ −10 ≤ 𝑥𝑖 ≤ 10,      𝑖 = 1,2, … , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 
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f03: Schwefel’s Problem 1.2 

𝑓(𝑥) =∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝑛

𝑖=1

 

¶ −100 ≤ 𝑥𝑖 ≤ 100,      𝑖 = 1,2,… , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 
f04: Schwefel’s Problem 2.21 

𝑓(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖| , 1 ≤ 𝑖 ≤ 𝑛} 

¶ −100 ≤ 𝑥𝑖 ≤ 100,      𝑖 = 1,2,… , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 
f05: Generalized Rosenbrock’s Function 

𝑓(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)
2
+ (𝑥𝑖 − 1)

2]

𝑛−1

𝑖=1

 

¶ −30 ≤ 𝑥𝑖 ≤ 30,      𝑖 = 1,2, … , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 1 

 
f06: Step Function 

𝑓(𝑥) =∑(⌊𝑥𝑖 + 0.5⌋)
2

𝑛

𝑖=1

 

¶ −100 ≤ 𝑥𝑖 ≤ 100,      𝑖 = 1,2,… , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 
f07: Quartic Function 

𝑓(𝑥) =∑𝑖𝑥𝑖
4

𝑛

𝑖=1

 

¶ −1.28 ≤ 𝑥𝑖 ≤ 1.28,      𝑖 = 1,2,… , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 
f08: Generalized Schwefel’s Problem 2.26 

𝑓(𝑥) = −∑[𝑥𝑖𝑠𝑖𝑛 (√|𝑥𝑖|)]

𝑛

𝑖=1

 

¶ −500 ≤ 𝑥𝑖 ≤ 500,      𝑖 = 1,2,… , 𝑛, 
¶ 𝑓𝑚𝑖𝑛(𝑋

∗) = −418.982887272433799807913601398𝑛,     𝑥𝑖
∗ = 420.968748 

 
f09: Generalized Rastrigin’s Function 

𝑓(𝑥) =∑[𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
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¶ −5.12 ≤ 𝑥𝑖 ≤ 5.12,      𝑖 = 1,2,… , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 

f10: Ackley’s Function 

𝑓(𝑥) = −20𝑒
(−0.2√

1
𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 )

− 𝑒
(
1
𝑛
∑ cos (2𝜋𝑥𝑖)
𝑛
𝑖=1 )

+ 20 + 𝑒(1) 

¶ −32 ≤ 𝑥𝑖 ≤ 32,      𝑖 = 1,2, … , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 
f11: Generalized Griewank’s Function 

𝑓(𝑥) =
1

4000
∑𝑥𝑖

2

𝑛

𝑖=1

−∏𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
)

𝑛

𝑖=1

+ 1 

¶ −600 ≤ 𝑥𝑖 ≤ 600,      𝑖 = 1,2,… , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 0 

 
f12: Generalized Penalized No.1 Function 
 

𝑓(𝑥) =
𝜋

𝑛
{10𝑠𝑖𝑛2(𝜋𝑦1) +∑(𝑦𝑖 − 1)

2[1 + 10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)]

𝑛−1

𝑖=1

+ (𝑦𝑛 − 1)
2}

+∑𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚)

𝑛

𝑖=1

 

where 

𝑦𝑖 = 1 +
1

4
(𝑥𝑖 + 1),     𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚                    𝑥𝑖 > 𝑎

0                         − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚             𝑥𝑖 < −𝑎

 

¶ 𝑎 = 10,     𝑘 = 100     &     𝑚 = 4 

¶ −50 ≤ 𝑥𝑖 ≤ 50,      𝑖 = 1,2, … , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 1  

 
f13: Generalized Penalized No.2 Function 

𝑓(𝑥) = 0.1 {𝑠𝑖𝑛2(3𝜋𝑥1) +∑(𝑥𝑖 − 1)
2[1 + 𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)]

𝑛−1

𝑖=1

+ (𝑥𝑛 − 1)
2[1 + 𝑠𝑖𝑛2(2𝜋𝑥𝑛)]}

+∑𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚)

𝑛

𝑖=1

 

where 

𝑢(𝑥𝑖, 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚                    𝑥𝑖 > 𝑎

0                         − 𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚             𝑥𝑖 < −𝑎

 

¶ 𝑎 = 5,     𝑘 = 100     &     𝑚 = 4 

¶ −50 ≤ 𝑥𝑖 ≤ 50,      𝑖 = 1,2, … , 𝑛 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0,     𝑥𝑖

∗ = 1 



 Computer Science & Information Technology (CS & IT) 136 
 

 

 

f14: Shekel's Foxholes Function 

𝑓(𝑥) = [
1

500
+∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖,𝑗)
62

𝑖=1

25

𝑗=1

]

−1

 

where 

𝑎𝑖,𝑗 = [
−32 −16     0     16     32  −32 …   0 16 32
−32 −32 −32 −32 −32 −16 … 32 32 32

] 

¶ −65.536 ≤ 𝑥𝑖 ≤ 65.536,      𝑖 = 1,2 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) ≈ 0.998003837794449325873406851315,     𝑥𝑖

∗ ≈ −31.97833 

 
f15: Kowalik’s Function 

𝑓(𝑥) =∑[𝑎𝑗 −
𝑥1(𝑏𝑗

2 + 𝑏𝑗𝑥2)

𝑏𝑗
2 + 𝑏𝑗𝑥3 + 𝑥4

]

211

𝑗=1

 

¶ −5 ≤ 𝑥𝑖 ≤ 5,      𝑖 = 1,2,3,4 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) ≈ 0.0003074859878056042168404344971009,  

¶ 𝑥𝑖
∗ ≈ {

0.192833452744335301314942585123
0.190836242203235800915303666443
0.123117296029247410738689372920
0.135765991801668826273045769995

} 

 

Table 6. Data for Kowalik’s Function 

𝑗 𝑎𝑗 𝑏𝑗
−1 

1 0.1957 0.25 

2 0.1947 0.5 

3 0.1735 1 

4 0.1600 2 

5 0.0844 4 

6 0.0627 6 

7 0.0456 8 

8 0.0342 10 

9 0.0323 12 

10 0.0235 14 

11 0.0246 16 

 
f16: Six-Hump Camel-Back Function 

𝑓(𝑥) = 4𝑥1
2 − 2.1𝑥1

4 +
1

3
𝑥1
6 + 𝑥1𝑥2 − 4𝑥2

2 + 4𝑥2
4 

¶ −5 ≤ 𝑥𝑖 ≤ 5,      𝑖 = 1,2 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = −1.031628453489877 "𝐼𝑡 ℎ𝑎𝑠 𝑓𝑜𝑢𝑟 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚",  

¶ 𝑥𝑖
∗ = (±0.08984201368301331,±0.7126564032704135) 

 
f17: Branin RCOS Function 

𝑓(𝑥) = (𝑥2 −
5.1

4𝜋2
)𝑥1

2 + (
5

𝜋
𝑥1 − 6)

2

 + 10 (1 −
1

8𝜋
) cos(𝑥1) + 10 

¶ −5 ≤ 𝑥1 ≤ 10,      0 ≤ 𝑥2 ≤ 15 
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¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 0.39788735772973816 "𝐼𝑡 ℎ𝑎𝑠 𝑡ℎ𝑟𝑒𝑒 𝑔𝑙𝑜𝑏𝑎𝑙 𝑚𝑖𝑛𝑖𝑚𝑢𝑚",  

¶ 𝑥𝑖
∗ = (−𝜋, 12.275), (𝜋, 2.275), (9.42478,2.475) 

 
f18: Goldstein-Price Function 

𝑓(𝑥) = 𝑓1(𝑥)𝑓2(𝑥) 

where 

𝑓1(𝑥) = 1 + (𝑥1 + 𝑥2 + 1)
2(19 − 14𝑥1 + 3𝑥1

2 − 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2) 

       𝑓2(𝑥) = 30 + (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1 + 12𝑥1

2 + 48𝑥2 − 36𝑥1𝑥2 + 27𝑥2
2) 

¶ −2 ≤ 𝑥𝑖 ≤ 2,      𝑖 = 1,2 

¶ 𝑓𝑚𝑖𝑛(𝑋
∗) = 3,     𝑥𝑖

∗ = (0,−1) 
 
f19,20: Hartman’s Family 

𝑓(𝑥) = −∑𝑐𝑖 𝑒𝑥𝑝 [−∑𝑎𝑖,𝑗(𝑥𝑗 − 𝑝𝑖,𝑗)
2

𝑛

𝑗=1

]

𝑚

𝑖=1

 

¶ 𝑚 = 4  ,    𝑛 = 3, 6 𝑓𝑜𝑟 𝑓19 𝑎𝑛𝑑 𝑓20, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦 

¶ 0 ≤ 𝑥𝑗 ≤ 1,      𝑗 = 1,2, . . . , 𝑛 

¶ 𝑓19: 𝑓𝑚𝑖𝑛(𝑋
∗) = −3.86278214782076,     𝑥𝑖

∗ = {
0.1,

0.55592003,
0.85218259

} 

¶ 𝑓20: 𝑓𝑚𝑖𝑛(𝑋
∗) = −3.32236801141551,     𝑥𝑖

∗ =

{
 
 

 
 
0.20168952,
0.15001069,
0.47687398,
0.27533243,
0.31165162,
0.65730054}

 
 

 
 

 

 

Table 7: Data for Hartman’s Function 1 

𝑖 𝑎𝑖,𝑗,   𝑗

= 1,2,3 

𝑐𝑖 𝑝𝑖,𝑗 ,   𝑗 = 1,2,3 

1 3 10 30 1 0.3689 0.1170 0.2673 

2 0.1 10 35 1.2 0.4699 0.4387 0.7470 

3 3 10 30 3 0.1091 0.8732 0.5547 

4 0.1 10 35 3.2 0.038150 0.5743 0.8828 
 

Table 8: Data for Hartman’s Function 2 

𝑖 𝑐𝑖 𝑎𝑖,𝑗 ,   𝑗 = 1,2, … ,6 𝑝𝑖,𝑗 ,   𝑗 = 1,2, … ,6 

1 1 10 3 17 3.5 1.7 8 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886 

2 1.2 0.05 10 17 0.1 8 14 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991 

3 3 3 3.5 1.7 10 17 8 0.2348 0.1415 0.3522 0.2883 0.3047 0.6650 

4 3.2 17 8 0.05 10 0.1 14 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381 

 

f21,22,23: Shekel's Family 

𝑓(𝑥) = −∑[(𝑥 − 𝑎𝑖)(𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

𝑛

𝑖=1

 

¶ n = 5, 7 and 10 for f21, f22 and f23, respectively 

¶ 0 ≤ 𝑥 ≤ 10,      𝑖 = 1,2, … , 𝑛 
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¶ f21: 𝑓𝑚𝑖𝑛(𝑥
∗) = −10.153198755084881776356839400251,  
𝑥∗ = 4.000085212027619539925233402760                           

¶ f22: 𝑓𝑚𝑖𝑛(𝑥
∗) = −10.402822044707775329070518200751, 

     𝑥∗ = 4.000089532152739968028886505640                                
¶ f23: 𝑓𝑚𝑖𝑛(𝑥

∗) = −10.536290299294717105427357601002, 
     𝑥∗ = 4.0001281610100453290705182007510                             

 

Table 9: Data for Shekel Functions f21,f22,f23 

𝑖 𝑎𝑖𝑗 , 𝑗 = 1,2,3,4 𝑐𝑖 

1 4 4 4 4 0.1 

2 1 1 1 1 0.2 

3 8 8 8 8 0.2 

4 6 6 6 6 0.4 

5 3 7 3 7 0.4 

6 2 9 2 9 0.6 

7 5 5 3 3 0.3 

8 8 1 8 1 0.7 

9 6 2 6 2 0.5 

10 7 3.6 7 3.6 0.5 
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