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a b s t r a c t

We show that biogeography-based optimization (BBO) is a generalization of a genetic algo-
rithm with global uniform recombination (GA/GUR). Based on the common features of BBO
and GA/GUR, we use a previously-derived BBO Markov model to obtain a GA/GUR Markov
model. One BBO characteristic which makes it distinctive from GA/GUR is its migration
mechanism, which affects selection pressure (i.e., the probability of retaining certain fea-
tures in the population from one generation to the next). We compare the BBO and GA/
GUR algorithms using results from analytical Markov models and continuous optimization
benchmark problems. We show that the unique selection pressure provided by BBO gener-
ally results in better optimization results for a set of standard benchmark problems. We
also present comparisons between BBO and GA/GUR for combinatorial optimization prob-
lems, include the traveling salesman, the graph coloring, and the bin packing problems.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Mathematical models of biogeography describe the migration of species between islands, along with their speciation and
extinction [27,57]. Biogeography-based optimization (BBO) was first presented in [45] and is an example of how a natural
process can be generalized to solve optimization problems. Since its introduction, it has been applied to a variety of prob-
lems, including sensor selection [45], power system optimization [38,42], groundwater detection [24], mechanical gear train
design [43], and satellite image classification [36].

Like other evolutionary algorithms (EAs), BBO is based on the idea of probabilistically sharing information between can-
didate solutions (individuals) based on their fitness values. Suppose we have a population of candidate solutions to an opti-
mization problem. Each individual is comprised of a set of features. When a copy of feature s from individual x replaces one
of the features in individual y, we say that s has emigrated from x and immigrated to y. The probability that a given individual
shares its features increases with fitness, and the probability that a given individual receives features from other individuals
decreases with fitness.

Although more complicated and life-like migration curves can give better optimization results [30], we use linear migra-
tion curves like those shown in Fig. 1 for the sake of simplicity. Fig. 1 illustrates two individuals in BBO. S1 represents a poor
solution and S2 represents a good solution. The immigration probability for S1 will therefore be higher than the immigration
probability for S2. The emigration probability for S1 will be lower than the emigration probability for S2.

There are several different ways to implement the details of BBO, but in this paper we use the original BBO formulation
[45], which is called partial immigration-based BBO in [47]. In this approach, for each feature in each solution we probabi-
listically decide whether or not to immigrate. If immigration is selected for a given feature, then the emigrating solution is
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probabilistically selected based on fitness (e.g., using roulette wheel selection). This gives the algorithm shown in Fig. 2 as a
conceptual description of one generation. Migration and mutation of each individual in the current generation occurs before
any of the individuals are replaced in the population, which requires the use of the temporary population z in the BBO algo-
rithm shown in Fig. 2. Borrowing from GA terminology [55], we therefore say that Fig. 2 depicts a generational BBO algorithm.

This paper is based on a previously-developed Markov model for BBO [48]. Markov models have been developed for other
EAs also, including simple genetic algorithms [50,51] and simulated annealing [28].

A Markov chain is a random process which has a set of T possible states [19, Chapter 11]. The probability that the system
transitions from state i to state j is given by the probability Pij, which is called a transition probability. The T � T matrix
P = [Pij] is called the transition matrix. If w(t) is a column vector containing the probabilities that the system is in each state
at time t, then w(t + 1) = Pw(t) describes how the probabilities change from one time step to the next. A Markov chain and its
transition matrix are regular if some power of the transition matrix has only positive elements. The fundamental limit the-
orem for regular Markov chains says that if P is regular, then

lim
n!1

Pn ¼ Pð1Þ ð1Þ

where each row pss of P(1) is the same. The ith element of pss is the probability that the Markov chain is in state i after an
infinite number of transitions, and pss is independent of the initial state.

A Markov state in this paper represents a BBO population distribution. Each state describes how many of each individual
of the search space there are in the population. The probability Pij is the probability that the population transitions from the
ith distribution to the jth distribution from one generation to the next. If the mutation rate is nonzero, this probability is

Fig. 1. Illustration of two candidate solutions to some problem using symmetric immigration and emigration curves. S1 is a relatively poor solution and S2 is
a relatively good solution. S1 is likely to receive features from other individuals, but unlikely to share features with other individuals. S2 is unlikely to receive
features from other individuals, but likely to share features with other individuals.

Fig. 2. One generation of the BBO algorithm. N is the population size, y is the entire population of solutions, yk is the kth solution, and yk(s) is the sth feature
of yk. Similarly, z is the temporary population of solutions, zk is the kth temporary solution, and zk(s) is the sth feature of zk.
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greater than zero for all i and j, which means that the transition matrix is regular. This means that there is a unique, nonzero,
limiting probability for each possible population distribution as the number of generations approaches infinity.

In Section 2, we compare and contrast BBO and GA with global uniform recombination (GA/GUR) from an algorithmic
perspective. In Section 3 we review our previously-derived BBO Markov model [48] and use it to obtain the limiting distri-
bution of the populations. We compare the BBOMarkov model with the Markov models of GA/GUR and GA with single-point
crossover (GA/SP). In Section 4 we use the BBO and GA/GUR Markov models to make some analytical comparisons, which we
then support with simulations of parametric benchmark optimization problems. In Section 5 we empirically compare BBO
and GA/GUR on combinatorial benchmarks, including traveling salesman, graph coloring, and bin packing problems. We pro-
vide concluding remarks and directions for future work in Section 6.

2. Biogeography-based optimization and genetic algorithms

The BBO migration strategy is conceptually similar to a combination of two ideas from the GA literature: global recombi-
nation and uniform crossover. The first idea, global recombination, originated with evolutionary strategies (ES) and means
that many parents can contribute features to a single offspring [2,3]. This idea has also been applied with the names mul-
ti-parent recombination [12,13] and scanning crossover [14], and was suggested as early as 1966 [6]. Global recombination
strays from the biological foundation of GAs because individuals in nature cannot have more than two parents. There are
several choices to be made when implementing global recombination in GAs. For example, how many individuals should
be in the pool of potential parents? How should individuals be chosen for the pool? Once the pool has been determined,
how should parents be selected from the pool?

The second idea, uniform crossover, was first proposed in [1]. Uniform crossover means that each solution feature in an
offspring is generated independently from every other solution feature. If we combine global recombination and uniform
crossover, we obtain global uniform recombination. If in addition we use the entire population as potential contributors to
the next generation, and we also use fitness-based selection for each solution feature in each offspring, we obtain the algo-
rithm shown in Fig. 3. Comparing Figs. 2 and 3, we see that BBO is a generalization of a specific type of GA/GUR. If rather than
setting kk = 1 � lk in the BBO algorithm of Fig. 2, we instead set kk = 1 for all k, then we obtain the GA/GUR algorithm of Fig. 3.

It is not too surprising that BBO is similar to GA/GUR, because many EAs can be expressed in terms of each other. For
example, consider differential evolution (DE) [49,37]. DE involves the selection of three random individuals from the popu-
lation, denoted r1, r2, and r3, and the generation of a random integer n between 1 and the population size. If, however, r1 is
selected on the basis of fitness, r2 is replaced with r1, r3 is replaced with r2 and is selected on the basis of fitness, and n = 1,
then DE is equivalent to a continuous GA with intermediate global recombination [21] in which the first parent is chosen
deterministically and the second parent is chosen based on fitness.

As another example of the similarity between EAs, consider particle swarm optimization (PSO) [8]. If a particle’s velocity
at each generation is independent of its previous velocity, the random proportionality constant /1 is set equal to 0, and the
neighborhood’s best position pg is probabilistically selected based on fitness, then PSO, like DE, is equivalent to a continuous
GA with intermediate fitness-based global recombination.

The final example that we note here is evolution strategy (ES) [32]. If a (l,k) ES is implemented with k = l, with fitness-
based parent selection, with uniform recombination, and with a constant (nonadaptive) mutation parameter, then it is
equivalent to a GA with fitness-based global uniform recombination. (Note that the l and k that are used in ES notation
are not related to the l and k that are used in biogeography and BBO notation.)

Since GA/GUR can be viewed as either BBO, DE, PSO, or ES under special conditions, it follows that all of these EAs function
identically under these special conditions. However, this identical functionality occurs only under special conditions, and

Fig. 3. One generation of a GA with global uniform recombination (GA/GUR). N is the population size, y is the entire population of solutions, yk is the kth
solution, and yk(s) is the sth feature of yk. Similarly, z is the temporary population of solutions, zk is the kth temporary solution, and zk(s) is the sth feature of
zk. Compare with Fig. 2.
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each EA still has its own particular features and parameters that give it a unique flexibility that other EAs do not have. It is
therefore useful to retain the distinction between these EAs because of their differences.

Another reason that it is useful to retain the distinction between EAs is their unique biological motivations. For example,
retaining the biological foundation of GAs stimulates the incorporation of features from biology in GAs, which makes the
study of GAs richer and more flexible. Some of these features include gender, niching, crowding, aging, diploidy, co-evolu-
tion, and ontogony [3].

Similarly, it is advantageous to retain BBO as a distinctive EA rather than viewing it as a generalized GA. Unifying various
EAs is instructive, but retaining BBO as a separate algorithm stimulates the incorporation of behaviors from natural bioge-
ography into the BBO algorithm, and this opens up many areas of further research. Some of these behaviors include the effect
of geographical proximity on migration rates, nonlinear migration curves [30], species populations (including mortality and
reproduction), predator/prey relationships, species mobilities, directional momentum during migration, habitat area and iso-
lation, and many others [27,57].

3. Markov models for BBO and GA/GUR

In [48] a Markov model for BBO is derived. In this section we review that model and show how it also applies to GA/GUR.
This allows us to make analytical comparisons between BBO and GA/GUR at the end of this section and support those results
with simulations.

3.1. Markov model for biogeography-based optimization

The BBO Markov model derived in [48] makes three assumptions. First, all of the new BBO solutions are created before
any solutions are replaced in the population; that is, we use a generational BBO algorithm rather than a steady-state BBO
algorithm. This is clear from the use of the temporary population z in Fig. 2. Second, a solution can emigrate a feature to itself.
Third, the migration rates k and l are independent of the population distribution; that is, absolute fitness values are used to
obtain k and l, as opposed to a rank-based fitness [56].

Suppose that we have a problem whose solutions are in a binary search space. The set of candidate solutions is the set of
all bit strings xi consisting of q bits each. Therefore, the cardinality of the search space is n = 2q. We use N to denote the pop-
ulation size, and we use v = [v1, . . . ,vn]T to denote the population vector, where the component vi 2 {0, . . . ,N} is the number of
xi individuals in the population. We see thatXn

i¼1
v i ¼ N ð2Þ

We use yk to denote the kth individual in the population, where the elements of yk are ordered to group identical individuals.
The population of the search algorithm can thus be depicted as

Population ¼ y1; . . . ; yNf g ¼ x1; x1; . . . ; x1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
v1 copies

; x2; x2; . . . ; x2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
v2 copies

; . . . ; xn; xn; . . . ; xn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
vn copies

8><
>:

9>=
>; ð3Þ

We use li to denote the emigration probability of xi, which is proportional to the fitness of xi. We use ki to denote the immi-
gration probability of xi, which decreases with the fitness of xi. Note that we used li and ki, for i 2 {1, . . . ,N}, in Fig. 2 to refer to
the migration probabilities of yi; now we are using li and ki, for i 2 {1, . . . ,n}, to refer to the migration probabilities of xi.

We use the notation xi(s) to denote the sth bit of solution xi. For i 2 {1, . . . ,n} and s 2 {1, . . . ,q} we use the notation JiðsÞ to
denote the set of search space indices j such that xj(s) = xi(s):

JiðsÞ ¼ j 2 1; . . . ;nf g : xjðsÞ ¼ xiðsÞ
� � ð4Þ

Note that the cardinality of JiðsÞ is n/2 for all i and s. See [48] for an example that shows how JiðsÞ is constructed. From (3)
we see that

yk ¼

x1 for k ¼ 1; . . . ; v1

x2 for k ¼ v1 þ 1; . . . ;v1 þ v2

x3 for k ¼ v1 þ v2 þ 1; . . . ;v1 þ v2 þ v3

..

. ..
.

xn for k ¼Pn�1
i¼1 v i þ 1; . . . ;N

8>>>>>>><
>>>>>>>:

ð5Þ

This can be written more compactly as

yk ¼ xmðkÞ for k ¼ 1; . . . ;N ð6Þ
where m(k) 2 {1, . . . ,n} is defined as

mðkÞ ¼min r such that
Xr
i¼1

v i P k ð7Þ
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We use an additional subscript to denote the generation number of the algorithm. For example, yk(s)t is the value of the sth
bit of the kth individual at generation t.

Let im(t) be the event that immigration occurs at the tth generation, and let imðtÞ be its negation. With these definitions,
and viewing yk(s)t+1 as a random variable, it is shown in [48] that for fixed i, k, s, and t,

PrðykðsÞtþ1 ¼ xiðsÞÞ ¼ PrðimðtÞÞPrðykðsÞtþ1 ¼ xiðsÞjimðtÞÞ þ PrðimðtÞÞPrðykðsÞtþ1 ¼ xiðsÞjimðtÞÞ

¼
ð1� kmðkÞÞ þ kmðkÞ

P
j2JiðsÞ

v jljPn

j¼1v jlj
; if xmðkÞðsÞ ¼ xiðsÞ

kmðkÞ

P
j2Ji ðsÞ

v jljPn

j¼1v jlj
; if xmðkÞðsÞ – xiðsÞ

8>>><
>>>: ¼ ð1� kmðkÞÞ10ðxmðkÞðsÞ � xiðsÞÞ þ kmðkÞ

P
j2JiðsÞv jljPn
j¼1v jlj

¼ ð1� kmðkÞÞ10ðxmðkÞðsÞ � xiðsÞÞ þ kmðkÞfiðsÞ ð8Þ
where 10 is the indicator function on the set {0}, and fi(s) is defined by the above equation. We call fi(s) the fitness-weighted
abundance of xi(s) bits in the population. Note that fi(s) is equal to Pr(yk(s)t+1 = xi(s)jim(t)). This is the ratio of the sum of the
fitness values of those individuals whose sth bit is equal to xi(s), to the sum of the fitness values of the entire population.
Since we use fitness-proportional selection to choose the emigrating individual, as shown in the use of lk in Fig. 2, the ratio
of sums gives the desired probability.

For each k and each individual yk,t+1, we have q independent random variables, yk(1)t+1, . . . ,yk(q)t+1. Therefore, for a fixed i,

Prðykð1Þtþ1 ¼ xið1Þ; . . . ; ykðqÞtþ1 ¼ xiðqÞÞ ¼
Yq
s¼1

PrðykðsÞtþ1 ¼ xiðsÞÞ ð9Þ

Given this fact and the fact that the population at the t-th generation is described by the vector v, the probability that yk,t+1 = -
xi is denoted as Pki(v) and can be written as

PkiðvÞ ¼ Prðyk;tþ1 ¼ xiÞ ¼
Yq
s¼1
ð1� kmðkÞÞ10ðxmðkÞðsÞ � xiðsÞÞ þ kmðkÞ

P
j2JiðsÞv jljPn
j¼1v jlj

" #
ð10Þ

Pki(v) can be computed for each k 2 {1, . . . ,N} and each i 2 {1, . . . ,n} to form the N � n matrix P(v). The kth row of P(v) corre-
sponds to the kth iteration of the outer loop in Fig. 2. The ith column of P(v) corresponds to the probability of obtaining xi
during each outer loop iteration.

The BBO algorithm entails N trials (i.e., N iterations of the outer loop in Fig. 2), where the probability of the ith outcome on
the kth trial (that is, yk xi) is given as Pki(v). We use ui to denote the total number of times that outcome i occurs after all N
trials have been completed, and define u ¼ ½u1 � � � un �T . Then the probability that we obtain population vector u at the
(t + 1) st generation, given that we have population vector v at the tth generation, can be calculated with the generalized
multinomial theorem [48,4] as

PrðujvÞ ¼
X
J2YðuÞ

YN
k¼1

Yn
i¼1

PJki
ki ðvÞ ð11Þ

where

YðuÞ ¼ J 2 RN�n : Jki 2 0;1f g;
Xn
i¼1

Jki ¼ 1 for all k;
XN
k¼1

Jki ¼ ui for all i

( )
ð12Þ

An example of how to construct Y(u)) is given in [48].
To include the possibility of mutation, we use U to denote the n � n mutation matrix, where Uij is the probability that xj

mutates to xi. The probability that yk,t+1 = xi with both migration and mutation considered is denoted as PðmÞki ðvÞ and is given
by

PðmÞki ðvÞ ¼
Xn
j¼1

UijPkjðvÞ ð13Þ

from which we obtain

PðmÞðvÞ ¼ PðmÞki ðvÞ
h i

¼ PðvÞUT ð14Þ

where the elements of P(v) are given in (10). P(v) is the N � n matrix containing the probabilities of obtaining each of n pos-
sible individuals at each of N immigration trials, if mutation is not considered. P(m)(v) contains those probabilities if both
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migration and mutation are considered. In this case we can write the probability of transitioning from population vector v to
population vector u after one generation as

PrðmÞðujvÞ ¼
X
J2YðuÞ

YN
k¼1

Yn
i¼1
½PðmÞki ðvÞ�Jki ð15Þ

Eq. (15) can be used to obtain the transition matrix elements for the Markov model of BBO if both migration and mutation
are considered. In Section 3.3 we use standard Markov tools [41] with the transition matrix to find the limiting distribution
of the BBO population for a particular problem.

The Markov transition matrix is obtained by computing (15) for each possible v vector and each possible u vector. The
transition matrix is therefore a T � T matrix, where T is the total number of possible population distribution vectors v; that
is, T is the number of n � 1 integer vectors whose elements sum to N, and each of whose elements is in [0,N]. This number
can be calculated several different ways. In [35] the value of T is expressed using the notation for combinations:

T ¼ Cðnþ N � 1;NÞ ð16Þ
Other methods for calculating T are discussed in [48].

3.2. Markov model for genetic algorithm with global uniform recombination

Since BBO reduces to GA/GUR if ki = 1 for all i, the equations in the preceding section all apply to GA/GUR if ki is replaced
with 1. In BBO, the immigration rate ki decreases with the fitness of xi. In GA/GUR, ki = 1 for all i; in this case, (10) becomes

PkiðvÞ ¼ Prðyk;tþ1 ¼ xiÞ ¼
Yq
s¼1

P
j2JiðsÞv jljPn
j¼1v jlj

" #
ð17Þ

while (11)–(16) remain the same. The following section shows that this simple change in selection pressure can make a sig-
nificant difference in optimization performance between the two algorithms.

3.3. Markov model comparisons

In this section we compare Markov model results for GA with single-point crossover (GA/SP), GA/GUR, and BBO. The Mar-
kov model for GA/GUR and BBO is presented in the previous sections. The Markov model for GA/SP is presented in
[41,35,9,10]. Due to the factorial increase of the transition matrix dimension that is associated with an increase in population
and search space size, we limit our investigation to four-bit problems (n = 16) with a population size of four (N = 4). This re-
sults in 3876 possible population vectors as calculated from (16).

We examine three problems in this section. The first problem is the unimodal one-max problem in which the fitness of
each bit string is equal to the number of ones in the bit string. The second problem is a multimodal problem; its fitness val-
ues are equal to those of the one-max problem, except that the bit string consisting of all zeros has the same fitness as the bit
string consisting of all ones. The third problem is a deceptive problem; its fitness values are equal to those of the one-max
problem, except it is a unimodal problem in which the bit string consisting of all zeros has the highest fitness.

Tables 1–3 show comparisons between Markov model results for GA/SP, GA/GUR, and BBO. The tables show the proba-
bility of obtaining a population in which all individuals are optimal, and the probability of obtaining a population in which
no individuals are optimal. The mutation rates shown in Tables 1–3 are applied to each bit in each individual. The models
have been previously supported with simulation results for various benchmark functions as shown in [46].

We used a crossover probability pc = 0.9 to generate the GA/SP data in Tables 1–3. Performance improves as pc increases,
but the improvement is very small. If we re-create Tables 1–3 using different values of pc, the numbers in the GA/SP columns
change by an average of less than 2% as pc increases from 0.5 to 1.

Table 1
Unimodal problem optimization results. The results were obtained using Markov models and were supported with simulation results. The best performance is
in bold font in each row.

Mutation rate Population vector Probability

GA/SP GA/GUR BBO

0.1 All optimal 0.0084 0.0079 0.0044
No optima 0.5826 0.5623 0.5111

0.01 All optimal 0.2492 0.2513 0.3484
No optima 0.5436 0.5372 0.2128

0.001 All optimal 0.4029 0.4034 0.7616
No optima 0.5696 0.5690 0.1679
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3.4. Discussion

Several things are notable about the results in Tables 1–3. We see that in each table, as the mutation rate decreases, per-
formance improves; that is, the probability of obtaining a population of all optimal individuals increases, and the probability
of obtaining no optimal individuals decreases. This is true for all three algorithms in all three tables.

GA/SP is the best algorithm only when the mutation rate is high (10% per bit), and only insofar as the probability of
obtaining a population of all optimal individuals is slightly higher in GA/SP than in GA/GUR and BBO. In every other perfor-
mance comparison in the tables, GA/GUR performs slightly better than GA/SP, and BBO performs significantly better than
both GA/SP and GA/GUR. This is especially true when the mutation rate is low (0.1% per bit), in which case BBO performs
better than GA/SP and GA/GUR in its higher probability of obtaining a population with all optimal indivuals (85 vs. 56%),
and in its lower probability of obtaining a population with no optimal individuals (10 vs. 41%).

The best performance in each table is obtained by BBO with a 0.1% mutation rate. The best GA/SP and GA/GUR perfor-
mance in each table is much worse than the best BBO performance in each table. In the unimodal problem results in Table
1, the lowest BBO probability of no optimal individuals is 17% while the lowest GA probability is 54%. In the multimodal
problem results in Table 2, the lowest BBO probability of no optimal individuals is 10% while the lowest GA probability is
41%. In the deceptive problem results in Table 3, the lowest BBO probability of no optimal individuals is 7% while the lowest
GA probability is 35%.

Previous papers have compared the optimization performance of multi-parent EAs and have reported similar results; in
particular, ES performance has been seen to generally improve as the number of parents increases [15]. However, we see in
this section that the difference between GA/SP and GA/GUR is relatively small, while the improved performance that comes
with BBO is significant. This is because a BBO individual uses its own fitness before deciding how likely it is to accept features
from other solutions. This simple and intuitive idea does not have an analogy in genetics, but is motivated by biogeography.
The results in this section are also consistent with [30], which shows that BBO with a constant immigration rate of k = 1
(which we have shown reduces BBO to GA/GUR) gives much worse performance than standard BBO (kk = 1 � lk) for a wide
range of benchmarks.

4. Probabilities of obtaining and retaining optimal solutions

In Section 4.1 we use the BBO and GA/GUR Markov models to determine the probability of finding an optimal solution in
one generation, assuming that the individuals in the population have been randomly and uniformly selected from the search
space, and assuming that no mutation occurs. We expect that this probability gives an indication of the relative difficulty of
finding an optimal solution over many generations. In Section 4.2 we approximate the probability of retaining an optimal
solution in the population under the same conditions. For these analyses, we use the probability of (8) in which the mutation
probability is assumed to be zero. In Section 4.3 we discuss our assumptions in more detail and compare BBO and GA/GUR
probabilities. In Section 4.4 we support our analyses with benchmark simulations.

Table 2
Multimodal problem optimization results. The results were obtained using Markov models and were supported with simulation results. The best performance
is in bold font in each row.

Mutation rate Population vector Probability

GA/SP GA/GUR BBO

0.1 All optimal 0.0119 0.0106 0.0066
No optima 0.5006 0.4939 0.4370

0.01 All optimal 0.3675 0.3701 0.4715
No optima 0.4139 0.4079 0.1450

0.001 All optimal 0.5655 0.5670 0.8502
No optima 0.4069 0.4053 0.0968

Table 3
Deceptive problem optimization results. The results were obtained using Markov models and were supported with simulation results. The best performance is
in bold font in each row.

Mutation rate Population vector Probability

GA/SP GA/GUR BBO

0.1 All optimal 0.01314 0.0109 0.0120
No optima 0.8120 0.8325 0.7954

0.01 All optimal 0.4601 0.4760 0.6506
No optima 0.4308 0.4103 0.1915

0.001 All optimal 0.6230 0.6383 0.9074
No optima 0.3638 0.3482 0.0730
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4.1. Probability of obtaining an optimum

In this section we first determine the probability that an optimal solution is found by the BBO algorithm in one genera-
tion, and then we do the same for GA/GUR. To obtain tractable and specific results for comparison between BBO and GA/GUR,
we consider a relatively simple problem with a population denoted as in (3). {x1, . . . ,xn} is the search space, and we specify
the l and k values of each xi as

l ¼ 2=3;1=3; . . . ;1=3f g
k ¼ 1=3;2=3; . . . ;2=3f g ð18Þ

That is, assuming the linear migration curves of Fig. 1, x1 is twice as fit as xi for i 2 {2, . . . ,n} and is therefore the optimal solu-
tion. Suppose that there are no x1 individuals in the population. Since yk – x1 for all k, we know that

v1 ¼ 0; mðkÞ– 1; kmðkÞ ¼ 2=3; lk ¼ 1=3; for all k 2 1; . . . ;Nf g ð19Þ
Therefore,X

j2J1ðsÞ
v jlj ¼

1
3

X
j2J1ðsÞ

v j ð20Þ

The search space {xi} consists of n possible solutions. We have N random variables yk, each having the identical probability
mass function

Prðyk ¼ xiÞ ¼
0; if i ¼ 1

1=ðn� 1Þ; if i 2 2; . . . ;nf g

�
ð21Þ

Given this random population distribution, and viewingm(k) as a function of the random population vector v as well as k, we
calculate the expected value of the random variable X = 10(xm(k)(s) � x1(s)) 2 {0,1}. We will continue to write m(k) instead of
m(k,v) for brevity of notation. Recall from (4) that the cardinality of JiðsÞ is n/2 for all i and s, so there are n/2 search space
indices m(k) for which xm(k)(s) = x1(s), or equivalently, for which X = 1. However, since there are no x1 individuals in the pop-
ulation, there are only (n/2 � 1) unique population indices k such that X = 1. This fact, along with the fact from (21) that there
are (n � 1) search space indices i such that yk = xi, gives

E½X� ¼ E½10ðxmðkÞðsÞ � x1ðsÞÞ� ¼ ð0ÞPr½X ¼ 0� þ ð1ÞPr½X ¼ 1� ¼ n=2� 1
n� 1

ð22Þ

A formal proof of (22) is in Appendix A. An argument similar to that given above can be used to show that

E 10ðxmðkÞðsÞ � x1ðsÞÞ10ðxmðkÞðrÞ � x1ðrÞÞ
� � ¼ n=2� 1

n� 1

� 	2

ð23Þ

for all r– s; that is, the expected value of the product is equal to the product of the expected values. Therefore, 10

(xm(k)(s) � x1(s)) and 10(xm(k)(r) � x1(r)), considered as functions of the random variables v and k, are uncorrelated random
variables for r– s.

We next calculate the expected value of
P

j2J1ðsÞv j with respect to the random variable v. For the sake of this calculation,
we temporarily re-index the components of v so thatX

j2J1ðsÞ
v j ¼ v1 þ v2 þ � � � þ vn=2 ð24Þ

Recall from (19) that v1 = 0. Recall from (21) that there are N individuals yk = xm(k) in the population chosen randomly and
uniformly from the remaining (n � 1) elements of the diminished search space {x2, . . . ,xn}. Therefore, on average there are
g = N/(n � 1) copies of each search space element xj (j– 1) in the population. We can depict this average population as

y1; . . . ; yNf g ¼ x2; x2; . . . ; x2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
v2¼g

; . . . ; xn; xn; . . . ; xn|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
vn¼g

8<
:

9=
; ð25Þ

This means that each of the components of v other than v1 has an average value given by E[vj] = N/(n � 1), j– 1. So we have

E
X

j2J1ðsÞ
v j

" #
¼ E½v1� þ E½v2� þ � � � þ E½vn=2�

¼ 0þ N
n� 1

þ � � � þ N
n� 1

ð26Þ

¼ Nðn=2� 1Þ
n� 1

ð27Þ

A formal proof of (27) can be constructed along the lines of the proof of (22). An argument similar to that given above can be
used to show that
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E
X

j2J1ðsÞ
v j

X
j2J1ðrÞ

v j

" #
¼ Nðn=2� 1Þ

n� 1

� 	2

ð28Þ

for all r– s. Therefore,
P

j2J1ðsÞv j and
P

j2J1ðrÞv j, considered as functions of the random variable v, are uncorrelated random
variables for r– s.

Now we use the above results with (8) to calculate the expected value of Pr(yk,t+1 = x1) with respect to the random vari-
ables v and k. We use the fact that the random variables

P
j2J1ðsÞv j and

P
j2J1ðrÞv j are uncorrelated for r– s, and 10

(xm(k)(s) � x1(s)) and 10(xm(k)(r) � x1(r)) are uncorrelated for r– s, to obtain

E½Prðyk;tþ1 ¼ x1Þ� ¼
Yq
s¼1

ð1� kmðkÞÞE½10ðxmðkÞðsÞ � x1ðsÞÞ� þ kmðkÞ
E
P

j2J1ðsÞv jlj

h i
Pn

j¼2v jlj

2
4

3
5

¼
Yq
s¼1

1
3

� 	
n=2� 1
n� 1

� 	
þ 2

3

� 	 1
3 E
P

j2J1ðsÞv j

h i
1
3

Pn
j¼2v j

0
@

1
A

2
4

3
5 ¼Yq

s¼1

1
3

� 	
n=2� 1
n� 1

� 	
þ 2

3

� 	 1
3


 � Nðn�2Þ
2ðn�1Þ

N=3

 !" #

¼ n� 2
2ðn� 1Þ
� 	q

� 2�q ¼ 1=n for large n: ð29Þ

The above result shows that the probability of finding the optimal solution, averaged over all population distributions given
by (21) and all k 2 {1, . . . ,N}, decreases exponentially with the number of bits in the search space. In addition, the average
probability of finding the optimal solution is not a function of the population size N. At first this seems nonintuitive, but
the average probability of (29) is averaged over all individuals and all possible population distributions. The average prob-
ability of keeping an optimal bit x1(s) in a random individual yk is the same as the average probability of migrating an optimal
bit into yk. When applied to real-world problems, EAs need to have a large enough population size N to reasonably cover the
search space. The performance of EAs in real problems is therefore highly dependent on N. However, the result of (29) gives
the probability of finding an optimal solution averaged over all possible populations, assuming that the optimal solution does
not yet exist in the population. This average probability is not a function of N.

Now consider the GA/GUR algorithm. We still have the l values shown in (18), but km(k) = 1 for all k. In this case (8) gives

E½Prðyk;tþ1 ¼ x1Þ� ¼
Yq
s¼1

ð1� kmðkÞÞE 10ðxmðkÞðsÞ � x1ðsÞÞ
� �þ kmðkÞ

E
P

j2J1ðsÞv jlj

h i
Pn

j¼2v jlj

2
4

3
5 ¼Yq

s¼1

1
3


 � Nðn�2Þ
2ðn�1Þ

N=3

 !

¼ ðn� 2Þ
2ðn� 1Þ
� 	q

� 2�q ¼ 1=n for large n ð30Þ

Comparing (29) and (30), we see that BBO and GA/GUR have the same average probability of obtaining an optimal individual.

4.2. Probability of retaining an optimum

In this section we first determine the probability that an optimum is retained in the BBO algorithm when elitism is not
used, and then we do the same for GA/GUR. This analysis is important in EA implementations in which elitism is not used,
which will be discussed further in Section 4.3. As above, we consider the relatively simple problem

l ¼ 2=3;1=3; . . . ;1=3f g
k ¼ 1=3;2=3; . . . ;2=3f g ð31Þ

That is, assuming the linear migration rates of Fig. 1, x1 is twice as fit as xi for i 2 {2, . . . ,n} and is therefore the optimal solu-
tion. In contrast to the previous section, we now suppose that there is exactly one x1 individual in the population; that is,
yk0 ¼ x1 for some k0, and yk – x1 for all k– k0. This gives

v1 ¼ 1; mðk0Þ ¼ 1; kmðk0Þ ¼ 1=3; lmðk0Þ ¼ 2=3 ð32Þ
Therefore,X

j2J1ðsÞ
v jlj ¼

X1
j¼1

v jlj þ
X

j2J1ðsÞ
j–1

v jlj ¼
2
3
þ 1
3

X
j2J1ðsÞ

j–1

v j ð33Þ

The search space {xi} consists of n possible solutions. Since yk0 ¼ x1, it is not random, but the (N � 1) individuals yk(k– k0) are
random, each with the identical probability mass function

Prðyk ¼ xiÞ ¼
0; if i ¼ 0
1=ðn� 1Þ; if i 2 2; . . . ;nf g

�
ð34Þ

Given this random population distribution, we calculate the expected value of the sum on the right side of (33) with respect
to the random variable v. Recall from (4) that the cardinality ofJiðsÞ is n/2 for all i and s. However, since the sum on the right
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side of (33) does not include the count of x1 individuals (that is, j– 1), there are only (n/2 � 1) terms in the sum. This fact,
along with the fact that there are (n � 1) search space indices j such that j– 1, and the fact that

Pn
j¼2v j ¼ N � 1 (since v1 = 1),

gives

E
X

j2J1ðsÞ
j–1

v j

2
664

3
775 ¼ ðN � 1ÞPrðykðsÞ ¼ x1ðsÞ : k–k0Þ ¼ ðN � 1Þðn=2� 1Þ

n� 1
ð35Þ

As with (22) and (27), a formal derivation similar to that in Appendix A can also be used to obtain (35).
Now, given that yk0 ;t ¼ x1, we use the above results with (8) to calculate the expected value of Prðyk0 ;tþ1 ¼ x1Þwith respect

to the probability density function of v:

E½Prðyk0 ;tþ1 ¼ x1Þ� ¼
Yq
s¼1

ð1� kmðk0ÞÞE½10ðxmðk0ÞðsÞ � x1ðsÞÞ� þ kmðk0Þ
E
P

j2J1ðsÞv jlj

h i
Pn

j¼1v jlj

2
4

3
5

¼
Yq
s¼1

2
3

� 	
ð1Þ þ 1

3

� 	 2
3þ ðN�1Þðn�2Þ6ðn�1ÞÞ

2
3þ N�1

3

 !" #

¼ ð5N þ 7Þn� 2ð3N þ 1Þ
6ðn� 1ÞðN þ 1Þ

� 	q

� 5N þ 7
6N þ 6

� 	q

for large n

� 5
6

� 	q

for large N ð36Þ

This result shows that if we have an optimum in the population, the probability of keeping that optimum from one gener-
ation to the next decreases exponentially with the number of bits in the search space. However, the rate of decrease is not
nearly as severe as it is for the probability of finding an optimum in the first place (compare (36) with (29)).

We also note from (36) that as the population size N increases, the probability of retaining the optimum decreases. The
probability is 1 for N = 1, and asymptotically decreases to (5/6)q as N approaches infinity. This agrees with intuition. A larger
population results in a greater chance of immigrating a nonoptimal bit (that is, the complement of x1(s)) to the optimal solu-
tion. This is because the l values are used to probabilistically select the emigrating solution, and a larger population gives a
larger piece of the roulette wheel to the nonoptimal solutions.

Now consider the GA/GUR algorithm. We still have the l values shown in (31), but km(k) = 1. In this case we obtain

E½Prðyk;tþ1 ¼ x1Þ� ¼
Yq
s¼1

ð1� kmðkÞÞE½10ðxmðkÞðsÞ � x1ðsÞÞ� þ kmðkÞ
E
P

j2J1ðsÞv jlj

h i
Pn

j¼1v jlj

2
4

3
5

¼
Yq
s¼1

4ðn� 1Þ þ ðN � 1Þðn� 2Þ
2ðn� 1ÞðN þ 1Þ

¼ ðN þ 3Þn� 2ðN þ 1Þ
2ðn� 1ÞðN þ 1Þ

� 	q

� N þ 3
2N þ 2

� 	q

for large n

� 1
2

� 	q

for large N ð37Þ

This result shows that if we have an optimum in the population, the probability of keeping that optimum from one gener-
ation to the next decreases exponentially with the number of bits in the search space. Furthermore, the rate of decrease is
more severe than that of BBO (compare with (36)). Similar to the discussion following (36), we note from (37) that as the
population size N increases, the probability of retaining the optimum decreases. The probability is 1 for N = 1, and asymp-
totically decreases to (1/2)q as N approaches infinity.

4.3. Discussion of analytical results

4.3.1. Assumptions
The preceding analysis was conducted under several simplifying assumptions. We assumed a domain of q-bit individuals

with a corresponding search space cardinality of n = 2q, and we analyzed the behavior of the algorithms for a single gener-
ation. We assumed that all individuals in the search space had the same fitness except for the global optimum, whose fitness
was twice that of the other individuals. Although many optimization problems do not satisfy this assumption, some of them
do, such as ‘‘needle-in-a-haystack’’ problems [34]. We assumed that the population was uniformly distributed throughout
the search space, which is a reasonable assumption given our assumed fitness function [11]. Although our analysis was
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conducted under special conditions, our simulation results in Section 4.4 will show that it provides a correct qualitative
description of BBO and GA/GUR behavior for standard benchmark problems.

We also assumed that no elitism was used. We can always implement elitism to guarantee that optima are retained in the
population, but sometimes it is desirable to use nonelitist algorithms. For example, fitness evaluations for real-world prob-
lems can be very expensive [5], requiring computation, simulations, or experiments that take on the order of days or even
weeks. The expense of fitness function evaluation is a common obstacle in the implementation of EAs, and has given rise to
recent research in methods for reducing the number of fitness function evaluations [39] and methods for fitness function
approximation [22]. It is desirable to use small population sizes for problems with expensive fitness function evaluations,
which in turn makes it desirable to use nonelitist EAs [53]. Even with elitist EAs, it is often desirable to find multiple optima,
or to find multiple solutions near the global optimum [29], which in turn gives importance to the probability of optimum
retention.

4.3.2. Summary, comparisons, and implications
The analysis of the preceding sections can be summarized as

E½Prðfinding an optimumÞ� � ð1=2Þq BBO
ð1=2Þq GA=GUR

(

E½Prðretaining an optimumÞ� � ð5=6Þq BBO
ð1=2Þq GA=GUR

(
ð38Þ

With the assumptions stated at the beginning of this section, both BBO and GA/GUR have equal chances of finding an opti-
mum, but BBO is much better than GA/GUR at retaining an optimum once it is found. This is due to BBO’s immigration rate,
which decreases with fitness, and which tends to preserve good solutions in the population. Futhermore, (38) shows that the
advantage of BBO over GA/GUR is more pronounced with larger problems (that is, larger q). We therefore expect BBO to be
particularly advantageous for problems with high dimensions.

We next consider the effect of population size on performance. Eqs. (36) and (37) are repeated here with the large n
approximation, but without the large N approximation:

BBO : E½Prðretaining an optimumÞ� � 5N þ 7
6ðN þ 1Þ
� 	q

GA=GUR : E½Prðretaining an optimumÞ� � N þ 3
2ðN þ 1Þ
� 	q ð39Þ

We can use these equations to obtain the performance of BBO relative to GA/GUR as a function of population size N:

BBO performance
GA=GUR performance

¼ 5N þ 7
3N þ 9

� 	q

ð40Þ

This equation confirms, for the special case discussed above, that relative BBO performance is better for larger q (that is,
larger problem dimensions). It also shows that relative BBO performance is better for larger N (that is, larger populations).
For N = 1, (40) evaluates to 1; that is, BBO and GA/GUR performance are equal. As N increases, (40) asymptotically approaches
(5/3)q.

In summary, we expect BBO to outperform GA/GUR for all problem sizes and all population sizes. But we expect BBO to be
particularly advantageous for high-dimension problems and with large populations.

4.4. Simulation results

This section supports the analysis of the preceding sections with simulations. The benchmarks that we used are represen-
tative of those published in the literature for comparison of optimization methods. We chose benchmarks that could be used
with a variable number of dimensions so that we could explore the effect of changing dimensions. The functions are sum-
marized in Table 4, which shows that they have a variety of characteristics. Multimodal functions are those which have mul-
tiple minima. An n-dimensional separable function is one which can be reduced to n independent one-dimensional
functions. A regular function is one which is differentiable. More information about these functions can be found in [2,58,7].

First we compare BBO and GA/GUR for different problem dimensions. We ran 100 Monte Carlo simulations of BBO and
GA/GUR for each of the 14 benchmarks using a population size of 50. We then took the minimum function value achieved
among the 100 BBO runs and the mininum achieved among the 100 GA/GUR runs, and counted the number of benchmarks
for which the BBO minimum was better than the GA/GUR minimum. The results are shown in Table 5, where it is seen that
BBO performance improves relative to GA/GUR as the problem dimension increases. At a low problem dimension of 5, BBO
performs better than GA/GUR on 4 out of 14 benchmarks. As the problem dimension increases to 30, BBO performs better
than GA/GUR on 14 out of 14 benchmarks. These results support the analysis of Section 4.3. Appendix B gives a more detailed
view of the data shown in Table 5, including statistical analyses.
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Next we compare BBO and GA/GUR for different population sizes. As above, we ran 100 Monte Carlo simulations of BBO
and GA/GUR for each of the 14 benchmarks. We set the problem dimension to 30. We again took the minimum function va-
lue achieved among the 100 BBO runs and the mininum achieved among the 100 GA/GUR runs, and counted the number of
benchmarks for which the BBO minimum was better than the GA/GUR minimum. The results are shown in Table 6, where it
is seen that BBO performance improves relative to GA/GUR as the population size increases. At a small population size of 10,
BBO performs better than GA/GUR on 10 out of 14 benchmarks. As the population size increases to 50, BBO performs better
than GA/GUR on 14 out of 14 benchmarks. These results support the analysis of Section 4.3. Appendix C gives a more detailed
view of the data shown in Table 6, including statistical analyses.

5. Combinatorial optimization

This section compares BBO and GA/GUR on combinatorial benchmark problems. We consider the traveling salesman
problem (TSP) in Section 5.1, the graph coloring problem in Section 5.2, and the bin packing problem in Section 5.3.

5.1. The traveling salesman problem

BBO was first applied to the TSP in [33], where a comparison was made with ant colony optimization, genetic algorithms,
particle swarm optimization, immune algorithms, and fish swarm algorithms. This section compares BBO with GA/GUR on
some TSP benchmarks.

Table 4
Benchmark function characteristics; n is the number of dimensions of the problem.

Function Multimodal? Separable? Regular? Domain

Ackley Yes No Yes [±30]n

Fletcher-Powell Yes No No [±p]n

Griewank Yes No Yes [±600]n

Penalty #1 Yes No Yes [±50]n

Penalty #2 Yes No Yes [±50]n

Quartic No Yes Yes [±1.28]n

Rastrigin Yes Yes Yes [±5.12]n

Rosenbrock No No Yes [±2.048]n

Schwefel 1.2 No No Yes [±65.536]n

Schwefel 2.21 No No No [±100]n

Schwefel 2.22 Yes No No [±10]n

Schwefel 2.26 Yes Yes No [±512]n

Sphere No Yes Yes [±5.12]n

Step No Yes No [±200]n

Table 5
Number of benchmarks for which BBO performs
better than GA/GUR, where the total number of
benchmarks is 14. The data shows that BBO perfor-
mance improves relative to GA/GUR as the problem
dimension increases. Population size is 50 and
results are based on 100 Monte Carlo simulations.

Problem dimension BBO wins

5 4
10 9
20 11
30 14

Table 6
Number of benchmarks for which BBO
performs better than GA/GUR, where the
total number of benchmarks is 14. The
data shows that BBO performance
improves relative to GA/GUR as the popu-
lation size increases. Problem dimension is
30 and results are based on 100 Monte
Carlo simulations.

Population size BBO wins

10 10
20 11
50 14
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There are many different ways to adapt EAs to solve the TSP. This section is based on the inver-over operator [52], which
has proven to be an effective heuristic for the TSP. The procedure of the inver-over operator is described as follows.

1. We begin with two parent individuals, p1 and p2, each with an ordered list of cities. The selection of the parents is what
distinguishes GA/SP, GA/GUR, and BBO from each other, and this will be discussed later in this section.

2. Given two parent individuals, we randomly select a city c1 from p1, and then select the city immediately following c1 as
the starting city cs.

3. We find c1 in p2, and select the city that follows it as the ending city ce.
4. We find ce in p1. We then reverse the sequence of cities between cs and ce in p1. This new ordering of cities is the offspring.

The above sequence of operations results in cs following ce in the offspring, just as it did in p2. The ordering of the other
cities is the same in the offspring as it was in p1. The result is that information is copied from p2 to p1 to create the offspring.

Fig. 4 illustrates the inver-over operator. First we randomly select c1 from p1, which in this case is city 3. We see that city 2
follows city 3 in p1, so cs = city 2. Then we find c1 in p2. We see that city 1 follows c1 in p2, so ce = city 1. We then go back to p1
and find ce in p1. We reverse the sequence of cities between cs and ce in p1, and this results in the offspring.

The difference between a GA and a BBO implementation of the inver-over operator lies in the selection of the parents.
With GA/SP, both parents are selected on the basis of their fitness values (for example, using roulette-wheel selection). This
results in the selection of two parents which probably have a high fitness. With GA/GUR, p1 is randomly selected with a uni-
form distribution from the entire population. This corresponds to an immigration probability of 1/N for each individual,
where N is the population size. The emigrating individual p2 is selected on the basis of fitness, just as with GA/SP. With
BBO, each individual is ranked according to fitness, assigned an emigration probability l that increases with fitness, and
an immigration probability k that decreases with fitness. Then p1 is selected using the immigration probabilities, and p2
is selected using the emigration probabilities. This results in an immigrating parent that probably has a low fitness, and
an emigrating parent that probably has a high fitness. These differences are summarized in Table 7.

We evaluated GA/GUR and BBO on five TSP benchmarks, all of which are available in [40]. Berlin-52 is a data set of 52
locations in Berlin, Germany. ST-70 is a 70-city problem, CH-130 is a 130-city problem, GR-202 is a 202-city problem,
and RAT-575 is a 575-city problem. For both GA/GUR and BBO we used a population size of 50 and an elitism parameter
of 5. Table 8 shows the best GA/GUR and BBO individual after 100 generations, averaged over 100 Monte Carlo simulations.
The table also shows the t-test results of the two sets of simulations. The algorithms are still converging after 100 genera-
tions, so the numbers in Table 8 should not be compared with the best published solutions, but only with each other to mea-
sure the effect of using BBO instead of GA/GUR for parent selection. Table 8 shows that BBO is significantly better than GA/
GUR for all five of the benchmarks.

5.2. Graph coloring

In the graph coloring problem, we are given a set of countries (vertices) on a map. Each country has some neighbors.
Neighboring countries are represented as vertices that are connected with an edge. Our goal is to find the minimum number
of colors with which we can color the vertices, under the constraint that connected vertices cannot share the same color. The
minimum number of colors is denoted as the chromatic number, v(G) [31].

Fig. 5 illustrates a graph coloring problemwith eight vertices and 12 edges, along with its solution. The minimum number
of colors needed to solve the problem is v(G) = 3. We have used different shapes instead of different colors in Fig. 5 for the

Fig. 4. Illustration of the inver-over operator for the TSP. Two parent individuals combine to form a child individual. See the text for a detailed description.
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sake of illustration. Note from the right side of Fig. 5 that none of the circles are connected to each other, none of the squares
are connected to each other, and none of the triangles are connected to each other.

One way to solve the graph coloring problem with an EA is to combine a greedy algorithm with the TSP inver-over oper-
ator. With this approach, each individual in the EA population stores an ordered list of vertices as its solution features. Infor-
mation about the order of the vertices is shared among individuals using the inver-over operator. The greedy algorithm of
Fig. 6 assigns colors to the vertices. The number of colors assigned by the greedy algorithm to a given individual is the cost of
that individual, and is used to assign emigration and immigration rates.

We evaluated three graph coloring benchmarks from [54]. The first benchmark is the Leighton graph from [25] and in-
cludes 450 vertices and 17,343 edges. The second benchmark is based on the Mycielski transformation and includes 191 ver-
tices and 2360 edges. The third benchmark is flat (that is, it has a uniform distribution of edges), and includes 300 vertices
and 21,695 edges.

Table 7
TSP parent selection probabilities used by GA/SP, GA/GUR, and BBO. p1
is the immigrating parent that receives information from the emigrating
parent p2. N is the population size, l is normalized fitness, and k = 1 � l.

GA/SP GA/GUR BBO

Parent p1 l 1/N l
Parent p2 l k k

Table 8
Comparison of the cost (traveling distance) between GA/GUR and BBO for traveling
salesman benchmarks. The numbers show the average of the best performance of 100
Monte Carlo simulations after 100 generations. The ‘‘Prob.’’ column shows the probability
that the GA/GUR and BBO results are from the same distribution.

TSP problem GA/GUR BBO Prob.

Berlin-52 17,294 15,916 0.1667
ST-70 2377 2170 0.0585
CH-130 36,175 34,250 0.0132
GR-202 2701 2579 0.0001
RAT-575 104,210 102,952 0.0043

Fig. 5. Illustration of a graph coloring problem with eight vertices and 12 edges. The unsolved graph is shown on the left, and the solved graph is shown on
the right, where we have used shapes to indicate colors. This problem can be solved with a minimum of three colors.

Fig. 6. The greedy graph coloring algorithm. For each vertex, this algorithm finds the next available color that is not used by a neighbor. The colors assigned
to the vertices depend on the order of the vertices.
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For both GA/GUR and BBO we used a population size of 50 and an elitism parameter of 3. Table 9 shows the best GA/GUR
and BBO individual after 100 generations, averaged over 30 Monte Carlo simulations. The table also shows the t-test results
of the two sets of simulations. We see from Table 9 that the improvement of BBO over GA/GUR is statistically significant for
the Leighton and Flat graph coloring problems, but BBO and GA/GUR have the same performance for the Mycielski problem.
Further research could focus on determining the types of graph coloring problems for which BBO performs better than GA/
GUR, and the reasons.

5.3. Bin packing

In the bin packing problem, we are given a list of items with various weights. Our problem is to pack the items in the
fewest bins, each of which have the same capacity [26].

One way to solve the bin packing problem with an EA is to combine a greedy algorithm with the TSP inver-over operator.
Each individual in the EA population stores an ordered list of items as its solution features. Information about the order of the
items is shared between individuals using the inver-over operator. Given an ordered list of items, the greedy algorithm of
Fig. 7 or Fig. 8 places the items in bins. The number of bins used by the greedy algorithm is the cost of that individual,
and is used to assign emigration and immigration rates.

We evaluated six bin packing benchmarks. The first three benchmarks are taken from [17,23]. The first benchmark is
called Binpack-1 and includes 120 items with weights uniformly distributed between 20 and 100, to be packed into bins with
a capacity of 150. The second benchmark is called Binpack-4; it is the same as Binpack-1 except that it includes 1000 items.
The third benchmark is called Binpack-8 and includes 501 items and bin capacities of 1000. The item weights are carefully
selected so that one big item and two small items in each bin is optimal.

The other three bin packing benchmarks are called Hard-0, Hard-1, and Hard-9 [44]. Each of these benchmarks
have 200 items with weights drawn from a uniform distribution on [20,35] � 103, to be packed into bins of capacity
105.

For both GA/GUR and BBO we used a population size of 50 and an elitism parameter of 3. Table 10 shows the best GA/GUR
and BBO individual after 100 generations, averaged over 30 Monte Carlo simulations. The table also shows the t-test results
of the two sets of simulations. We see from Table 10 that there is not much difference between GA/GUR and BBO for the bin
packing benchmarks. GA/GUR is better for three of the benchmarks, while BBO is better for the other three benchmarks. The
only problem for which the performance difference is statistically significant is the Binpack-4 problem, which BBO solves
better than GA/GUR. Table 10 can be interpreted to mean that the combination of the inver-over operator with greedy
bin packing algorithms is not a promising BBO strategy, and it needs to be modified for better results. This is left for future
work.

Table 9
Comparison of cost (number of colors) between GA/GUR and BBO for graph coloring
benchmarks. The numbers show the average of the best performance of 30 Monte Carlo
simulations after 100 generations. The ‘‘Prob.’’ column shows the probability that the GA/
GUR and BBO results are from the same distribution.

Problem GA/GUR BBO Prob.

Leighton 93.1 92.1 0.1053
Mycielski 26.1 26.1 1.0000
Flat 137.9 135.4 0.0060

Fig. 7. The first-fit greedy bin packing algorithm. Each item is placed into the first bin in which it fits. The bins into which each item is placed depends on
the order of the items.
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6. Conclusion

We have explored the similarities, differences, and relationships between BBO and GA/GUR conceptually, analytically,
and through simulation. We have seen that if the immigration rate kk is 1 for all BBO individuals, then BBO reduces to a spe-
cial case of GA/GUR. BBO is therefore a generalization of GA/GUR. Due to its non-uniform immigration rate, BBO can be
viewed as including additional ‘‘selection pressure’’ that is missing from GA/GUR. BBO does not include selection pressure
in the sense that the term is typically used in the context of reproduction algorithms, but BBO does include selection pressure
in a broader sense.

On one hand, the similarity between BBO and GA/GUR is not surprising because we see similarities between many EAs.
On the other hand, the similarity between BBO and GA/GUR is surprising in view of the fact that their biological motivations
are so different. The view of natural biogeography as an optimization process has guided the development of BBO, and it can
motivate many extensions also. These extensions should be emphasized in future BBO research and include such factors as
modeling for nonlinear migration curves [30], species populations, predator/prey relationships, species mobilities, direction
momentum during migration, habitat area, and habitat isolation.

We have summarized a Markov model of BBO and compared it with Markov models for GA/SP and GA/GUR. Results from
the Markov models provide theoretical evidence of strong differences in performance between BBO, GA/SP, and GA/GUR. We
have seen that for both unimodal and multimodal problems, the probability of obtaining a population of all optimal individ-
uals in GA/SP is slightly better than BBO when a high mutation rate is used (10% per bit). However, BBO performs signifi-
cantly better than both GA/SP and GA/GUR for lower mutation rates. Although our theoretical Markov results are limited
to small problem dimensions due to the factorial increase in the size of the Markov transition matrix with problem dimen-
sion, these results provide confidence for the successful application of BBO to larger, real-world problems.

We used the BBO and GA/GURMarkov models to approximate the probability of finding and retaining an optimal solution
in the population in one generation. Based on our analytical results, BBO’s performance matches or exceeds GA/GUR in these
areas, and its improved performance becomes more pronounced as the problem dimension and the population size becomes
larger. Although the theoretical results in this comparison were only approximate, they were supported with a set of bench-
mark comparisons.

Fig. 8. The best-fit greedy bin packing algorithm. Bins with a smaller residual capacity are filled before bins with a larger residual capacity. This is an
attempt to fill the bins more efficiently than the first-fit greedy algorithm. The bins into which each item is placed depends on the order of the items.

Table 10
Comparison of cost (number of bins) between GA/GUR and BBO for bin packing benchmarks. The
numbers show the average of the best performance of 30 Monte Carlo simulations after 100
generations. The ‘‘Prob.’’ column shows the probability that the GA/GUR and BBO results are from the
same distribution.

Problem GA/GUR BBO Prob.

Binpack-1 49.6 49.7 0.18
Binpack-4 414.0 413.7 0.04
Binpack-8 179.4 179.2 0.23
Hard-0 58.9 58.8 0.33
Hard-1 59.8 59.9 0.72
Hard-9 59.0 59.1 0.56
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We compared BBO and GA/GUR on combinatorial benchmarks. We found that BBO consistently performs much better on
TSP benchmarks, usually performs better on graph coloring benchmarks, and sometimes performs better on bin packing
benchmarks. The graph coloring and bin packing studies are preliminary, and more research is required to develop a robust
and widely applicable BBO algorithm for these problems.

For future work we see several important directions. The first is to extend BBO in the many directions indicated by
natural biogeography theory, as mentioned earlier in this conclusion. Another direction for future work is the development
of hybrid BBO algorithms. Since no single algorithm can provide optimal performance for all possible problems [20],
hybrid and adaptive algorithms are an important topic of current research. BBO has already been combined with opposi-
tion-based learning [16] and differential evolution [18]. Additional work in this area could focus on combining BBO with
other algorithms, and using benchmarks and real-world optimization problems to evaluate the performance of these
hybrid algorithms.

After BBO is combined with other EAs, theoretical approaches such as Markov theory should be used to explore the char-
acteristics of the combined algorithms. With analytical results such as those provided by Markov theory, we do not rely on
the stochastic nature of simulation studies to draw conclusions about performance, but we use simulations to support the-
oretical results and to probe the limits of the theory.
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Appendix A

In this appendix we derive (22), which gives the expected value of 10(xm(k)(s) � x1(s)). The expected value is taken with
respect to the random population distribution V (of which v is a realization) and the random population index K (of which k
is a realization). For ease of notation we define

gðK;VÞ ¼ 10ðxmðK;VÞðsÞ � x1ðsÞÞ ¼ 10ðyK;V ðsÞ � x1ðsÞÞ ð41Þ

where we have used (6). Then the expected value of g(K,V) with respect to K is

EK ½gðK;VÞ� ¼
XN
k¼1

gðk;VÞpKðkÞ ð42Þ

where pK(k) is the probability mass function of the random variable K. Since K has a uniform distribution, we have pK(k) = 1/N
for k = 1, . . . ,N. Therefore,

EK ½gðK;VÞ� ¼ 1
N

XN
k¼1

gðk;VÞ ¼ 1
N

XN
k¼1

10ðyk;V ðsÞ � x1ðsÞÞ ð43Þ

Next we take the expected value of EK[g(K,V)] with respect to the random population distribution V:

EV EK ½gðK;VÞ�f g ¼ 1
N
EV

XN
k¼1

10ðyk;V ðsÞ � x1ðsÞÞ
( )

ð44Þ

As shown in (16), there are a total of C(n + N � 1,N) possible population distributions. However, in our derivation of (22) we
assume that there are no x1 individuals in the population, so we have a total of C(n + N � 2,N) possible population distribu-
tions. Each population distribution has an equal probability of occurrence, so (44) can be written as

EV EK ½gðK;VÞ�f g ¼ 1
ND

XD
j¼1

XN
k¼1

10ðyk;vðjÞðsÞ � x1ðsÞÞ ð45Þ

where

D ¼ Cðnþ N � 2;NÞ ð46Þ
and v(j) is the jth possible population distribution. Without loss of generality, we assume that x1 is the binary string contain-
ing all zeros, that s = 1, that the bits are indexed beginning with the left-most bit, and that the xi’s are in natural binary order.
Then yk,v(j)(s) = x1(s) if and only if yk,v(j)(1) = 0, which is true if and only if yk,v(j) = xi for some i 2 [2,n/2]. (Recall that the der-
ivation of (22) assumes that yk,v(j) – x1 for all k, v(j).) Eq. (45) can then be written as

EV EK ½gðK;VÞ�f g ¼ 1
ND

XD
j¼1

XN
k¼1

Xn=2
i¼2

10ðyk;vðjÞ � xiÞ ¼ 1
ND

Xn=2
i¼2

XD
j¼1

XN
k¼1

10ðyk;vðjÞ � xiÞ ð47Þ
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The summation over k is nonzero only if vi(j) is nonzero, that is, only if at least one of the yk,v(j) individuals is equal to xi. This
means that the summation over j can be restricted to those values which have a nonzero vi(j). Since our population size is N,
the summation over v can thus be restricted to those populations for which vi(j) 2 [1,N], resulting in

EV EK ½gðK;VÞ�f g ¼ 1
ND

Xn=2
i¼2

XD
j¼1

v iðjÞ2½1;N�

XN
k¼1

10ðyk;vðjÞ � xiÞ ð48Þ

Now note that
PN

k¼110ðyk;vðjÞ � xiÞ is simply equal to the total number of individuals in the jth population that are equal to xi,
which is equal to vi(j), as shown in (3). Eq. (48) therefore becomes

EV EK ½gðK;VÞ�f g ¼ 1
ND

Xn=2
i¼2

XD
j¼1

v iðjÞ2½1;N�

v iðjÞ ð49Þ

Recall that
Pn

i¼1v iðjÞ ¼ N, as shown in (2). Suppose that vi(j) = a for some i, j, and for some a 2 [1,N]. This means that besides
the a individuals that are equal to xi, there are (N � a) additional individuals which are distributed across the (n � 2) remain-
ing search space indices. Generalizing (16), we see that there are a total of C((n � 2) + (N � a) � 1,N � a) =
C(n + N � a � 3,N � a) ways to accomplish this distribution. Eq. (49) can therefore be written as

EV EK ½gðK;VÞ�f g ¼ 1
ND

Xn=2
i¼2

XN
a¼1

aCðnþ N � a� 3;N � aÞ ¼ n=2� 1
ND

XN�1
a¼0
ðN � aÞCðnþ a� 3;aÞ ¼ n=2� 1

n� 1
ð50Þ

where we have used Theorem 1 (see below) to take the final step and obtain (22) as desired.

Theorem 1. Suppose that n;N 2 N are natural numbers with nP 3 and NP 1. ThenXN�1
j¼0
ðN � jÞCðnþ j� 3; jÞ ¼ N

n� 1
Cðnþ N � 2;NÞ ð51Þ

Proof. We let n 2 N; n P 3 be an arbitrary but fixed natural number. We apply the principle of mathematical induction
(PMI) to the proposition P(N) of (51), which we rewrite as

PðNÞ :
XN�1
j¼0
ðN � jÞ ðnþ j� 3Þ!

j!ðn� 3Þ! ¼
N

n� 1
ðnþ N � 2Þ!
N!ðn� 2Þ! ¼

ðnþ N � 2Þ!
ðN � 1Þ!ðn� 1Þ! ð52Þ

It is straightforward to show that P(1) is true; substituting N = 1 in (52) results in the identity 1 = 1. Next, assuming that P(N)
is true for some NP 1, we writeXN

j¼0
ðN þ 1� jÞ ðnþ j� 3Þ!

j!ðn� 3Þ! ¼
XN�1
j¼0
ðN þ 1� jÞ ðnþ j� 3Þ!

j!ðn� 3Þ! þ
ðnþ N � 3Þ!
N!ðn� 3Þ!

¼
XN�1
j¼0
ðN � jÞ ðnþ j� 3Þ!

j!ðn� 3Þ! þ
XN�1
j¼0

ðnþ j� 3Þ!
j!ðn� 3Þ! þ

ðnþ N � 3Þ!
N!ðn� 3Þ! ð53Þ

Applying the inductive hypothesis (52) to the first term on the right side of (53) givesXN
j¼0
ðN þ 1� jÞ ðnþ j� 3Þ!

j!ðn� 3Þ! ¼
ðnþ N � 2Þ!
ðN � 1Þ!ðn� 1Þ!þ

XN�1
j¼0

ðnþ j� 3Þ!
j!ðn� 3Þ! þ

ðnþ N � 3Þ!
N!ðn� 3Þ! ð54Þ

Applying Lemma 1, which follows this proof, to the second term on the right side of (54) givesXN
j¼0
ðN þ 1� jÞ ðnþ j� 3Þ!

j!ðn� 3Þ! ¼
Nðnþ N � 2Þ!
N!ðn� 1Þ! þ

Nðnþ N � 3Þ!
N!ðn� 2Þ! þ

ðnþ N � 3Þ!
N!ðn� 3Þ!

¼ Nðnþ N � 2Þ!
N!ðn� 1Þ! þ

Nðn� 1Þðnþ N � 3Þ!
N!ðn� 1Þ! þ ðn� 2Þðn� 1Þðnþ N � 3Þ!

N!ðn� 1Þ!

¼ 1
N!ðn� 1Þ! Nðnþ N � 2Þ!þ Nðn� 1Þðnþ N � 3Þ!þ½ ðn� 2Þðn� 1Þðnþ N � 3Þ!�

¼ 1
N!ðn� 1Þ! ½Nðnþ N � 2Þ!þ ðn� 1Þðnþ N � 3Þ!ðnþ N � 2Þ�

¼ 1
N!ðn� 1Þ! ½Nðnþ N � 2Þ!þ ðn� 1Þðnþ N � 2Þ!� ¼ ðnþ N � 2Þ!

N!ðn� 1Þ! ðnþ N � 1Þ

¼ ðnþ N � 1Þ!
N!ðn� 1Þ! ð55Þ

According to the PMI, P(N) is true for all NP 1. Since nP 3 is arbitrary, (51) is true for all nP 3 and for all NP 1. h
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Table 12
Comparison between BBO and GA/GUR performance on 10-dimensional benchmark problems with a population size of 50. The ‘‘Prob.’’ column shows the
probability that the BBO and GA/GUR results are from the same distribution.

BBO best GA best BBO ave. GA ave. BBO r GA r Prob.

Ackley 0.75 0.82 4.1 4.9 2.6 3.1 6.6e�9
Fletcher 3.5e+2 7.8e+2 1.5e+4 2.7e+4 4.2e+3 6.6e+3 1.2e�4
Griewank 1.000 1.016 1.6 1.8 1.2 1.3 1.0e�3
Penalty #1 0.015 0.088 1.8 1.4 0.36 0.51 2.9e�5
Penalty #2 0.14 0.39 3.7 5.5 1.2 2.0 6.2e�14
Quartic 0 0 1.9e�7 0.00019 2e�9 2.2e�6 2.0e�1
Rastrigin 0 0 3 3 0.28 0.75 1.1e�9
Rosenbrock 0 5.5 82 74 14 20 1.0e�2
Schwefel 1.2 55 89 1.2e+3 2.8e+3 3.8e+2 7.9e+2 2.6e�12
Schwefel 2.21 3.8 3.5 15 23 8.2 10 2.5e�2
Schwefel 2.22 0 0 0.64 0.96 0.22 0.41 2.4e�6
Schwefel 2.26 5.5 13 1.8e+2 1.5e+2 48 70 1.6e�9
Sphere 0 0 0.11 0.17 0.0077 0.023 3.7e�3
Step 5 8 74 1.4e+2 25 38 1.5e�8
BBO wins 90% 77% 100% –

Table 13
Comparison between BBO and GA/GUR performance on 20-dimensional benchmark problems with a population size of 50. The ‘‘Prob.’’ column shows the
probability that the BBO and GA/GUR results are from the same distribution.

BBO best GA best BBO ave. GA ave. BBO r GA r Prob.

Ackley 3.1 3.0 6.0 7.3 4.5 5.2 3.4e�14
Fletcher 1.5e+4 1.5e+4 1.1e+5 1.6e+5 4.5e+4 5.5e+4 1.3e�6
Griewank 1.6 2.3 7.5 6.7 3.3 4.0 3.1e�13
Penalty #1 1.5 2.3 61 2.8e+2 5.3 11 3.6e�1
Penalty #2 4.6 7.7 2.4e+4 3.1e+4 1.1e+3 2.6e+3 7.6e�3
Quartic 0 0 0.00061 0.0026 0.00002 0.00011 5.5e�2
Rastrigin 0 0.013 6.8 10 2.7 3.8 1.3e�15
Rosenbrock 12 18 1.5e+2 1.9e+2 68 96 1.8e�1
Schwefel 1.2 1.0e+3 1.4e+3 6.4e+3 9.5e+3 3.1e+3 5.3e+3 0
Schwefel 2.21 11 17 38 41 25 31 8.3e�14
Schwefel 2.22 0.22 0.96 3.6 5.8 1.8 2.6 1.2e�9
Schwefel 2.26 1.4e+2 1.6e+2 7.9e+2 8.4e+2 3.6e+2 4.5e+2 4.5 e�11
Sphere 0.0061 0.012 1.3 1.9 0.30 0.63 4.0e�8
Step 82 1.3e+2 4.3e+2 6.8e+2 2.5e+2 3.5e+2 2.6e�7
BBO wins 92% 93% 100% –

Table 11
Comparison between BBO and GA/GUR performance on 5-dimensional benchmark problems with a population size of 50. The ‘‘Prob.’’ column shows the
probability that the BBO and GA/GUR results are from the same distribution.

BBO best GA best BBO ave. GA ave. BBO r GA r Prob.

Ackley 0.036 0 2.9 3.6 1.2 1.7 2.7e�8
Fletcher 3 0.72 2.6e+3 5.2e+3 3.1e+2 6.9e+2 1.3e�3
Griewank 1.0003 1.0032 1.020 1.037 0.022 0.027 6.2e�6
Penalty #1 1.9e�6 0.00024 0.34 0.27 0.04 0.068 3.5e�4
Penalty #2 3.4e�5 0.012 0.59 1.0 0.11 0.19 3.4e�8
Quartic 0 0 6.2e�22 6.1e�7 6.2e�24 1e�8 2.0e�1
Rastrigin 0 0 0.9 2 0.033 0.16 2.2e�3
Rosenbrock 0 0 3.8 7.9 1.8 2.0 2.4e�2
Schwefel 1.2 0.34 2.8 1.5e+2 2.9e+2 16 61 7.8e�13
Schwefel 2.21 0.26 0.068 4.1 5 1.7 2.3 2.4e�5
Schwefel 2.22 0 0 0.29 0.48 0.048 0.1 5.5e�5
Schwefel 2.26 0.26 0.44 30 40 5.8 9.6 1.5e�5
Sphere 0 0 0.0064 0.024 0.00022 0.0018 6.4e�5
Step 0 0 15 14 2.5 4.1 5.8e�6
BBO wins 57% 85% 92% -
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Lemma 1. Suppose that n;N 2 N are natural numbers with nP 3 and NP 1. Then

QðNÞ :
XN�1
j¼0

ðnþ j� 3Þ!
j!ðn� 3Þ! ¼

Nðnþ N � 3Þ!
N!ðn� 2Þ! ð56Þ

Proof. We need the constraints on n and N so that the arguments of the factorials are well-defined. Let n 2 N; n P 3 be an
arbitrary but fixed natural number. We apply the PMI to the proposition Q(N) of (56). It is straightforward to show that Q(1)
is true; substituting N = 1 in (56) results in the identity 1 = 1. Next, we write

XN
j¼0

ðnþ j� 3Þ!
j!ðn� 3Þ! ¼

XN�1
j¼0

ðnþ j� 3Þ!
j!ðn� 3Þ! þ

ðnþ N � 3Þ!
N!ðn� 3Þ! ð57Þ

Assuming that Q(N) is true for some NP 1 and applying the inductive hypothesis (56) to the first term on the right side of
(57) yields

Table 14
Comparison between BBO and GA/GUR performance on 30-dimensional benchmark problems with a population size of 50. The ‘‘Prob.’’ column shows the
probability that the BBO and GA/GUR results are from the same distribution.

BBO best GA best BBO ave. GA ave. BBO r GA r Prob.

Ackley 4.1 4.7 8.0 9.3 6.4 7.1 2.5e�10
Fletcher 5.9e+4 6.6e+4 3.0e+5 3.4e+5 1.6e+5 1.8e+5 1.5e�8
Griewank 4.5 5.1 16 19 9.2 12 2.8e�7
Penalty #1 8.4 10 8.7e+4 2.2e+5 1.5e+3 4.2e+3 1.5e�1
Penalty #2 2.5e+2 7.2e+2 1.0e+6 1.1e+6 6.3e+4 1.7e+5 9.4e�3
Quartic 7.7e�8 1e�5 0.049 0.37 0.0038 0.031 3.5e�2
Rastrigin 2 5 14 16 7.4 9.7 2.6e�11
Rosenbrock 38 61 3.4e+2 3.7e+2 1.7e+2 2.0e+2 2.4e�4
Schwefel 1.2 5.0e+3 6.3e+3 1.4e+4 2.7e+4 8.9e+3 1.5e+4 0
Schwefel 2.21 24 30 49 58 36 43 6.5e�14
Schwefel 2.22 1.6 3.8 10 13 5.9 7.4 0
Schwefel 2.26 4.4e+2 7.0e+2 1.6e+3 1.8e+3 9.6e+2 1.2e+3 7.5e�10
Sphere 0.41 0.85 4.2 6.6 1.9 2.8 1.6e�7
Step 3.4e+2 6.5e+2 1.5e+3 2.6e+3 9.0e+2 1.2e+3 3.6e�11
BBO wins 100% 100% 100% –
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Fig. 9. Comparison between average BBO and GA/GUR performance on 5-dimensional benchmark problems with a population size of 50. Performance
numbers are taken from the ‘‘Ave.’’ columns of Table 11 and are normalized to the better (smaller) of the results of the two algorithms. The 14 categories
along the horizontal axis correspond to the 14 benchmarks in Table 11.
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XN
j¼0

ðnþ j� 3Þ!
j!ðn� 3Þ! ¼

ðnþ N � 3Þ!
ðN � 1Þ!ðn� 2Þ!þ

ðnþ N � 3Þ!
N!ðn� 3Þ! ¼

Nðnþ N � 3Þ!
N!ðn� 2Þ! þ

ðn� 2Þðnþ N � 3Þ!
N!ðn� 2Þ!

¼ Nðnþ N � 3Þ!þ ðn� 2Þðnþ N � 3Þ!
N!ðn� 2Þ! ¼ ðnþ N � 3Þ!ðnþ N � 2Þ

N!ðn� 2Þ! ¼ ðnþ N � 2Þ!
N!ðn� 2Þ! : ð58Þ

According to the PMI, Q(N) is true for all NP 1. Since nP 3 is arbitrary, (56) is true for all nP 3 and for all NP 1. h

Appendix B

Tables 11–14 give a detailed breakdown of the four rows of Table 5 and compare BBO and GA/GUR performance for dif-
ferent problem dimensions. The data in each table were generated using a population size of 50, no elitism, and a mutation
rate of 1%. The numbers in the ‘‘Best’’ columns show the best BBO and GA/GUR results after 100 Monte Carlo simulations and
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Fig. 10. Comparison between average BBO and GA/GUR performance on 10-dimensional benchmark problems with a population size of 50. Performance
numbers are taken from the ‘‘Ave.’’ columns of Table 12 and are normalized to the better (smaller) of the results of the two algorithms. The 14 categories
along the horizontal axis correspond to the 14 benchmarks in Table 12.
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Fig. 11. Comparison between average BBO and GA/GUR performance on 20-dimensional benchmark problems with a population size of 50. Performance
numbers are taken from the ‘‘Ave.’’ columns of Table 13 and are normalized to the better (smaller) of the results of the two algorithms. The 14 categories
along the horizontal axis correspond to the 14 benchmarks in Table 13.
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Fig. 12. Comparison between average BBO and GA/GUR performance on 30-dimensional benchmark problems with a population size of 50. Performance
numbers are taken from the ‘‘Ave.’’ columns of Table 14 and are normalized to the better (smaller) of the results of the two algorithms. The 14 categories
along the horizontal axis correspond to the 14 benchmarks in Table 14.

Table 15
Comparison between BBO and GA/GUR performance on 30-dimensional benchmark problems with a population size of 10. The ‘‘Prob.’’ column shows the
probability that the BBO and GA/GUR results are from the same distribution.

BBO best GA best BBO ave. GA ave. BBO r GA r Prob.

Ackley 9.9 9.7 15 15 12 13 5.3e�8
Fletcher 1.7e+5 1.7e+5 6.4e+5 8.3e+5 3.8e+5 4.6e+5 1.5e�3
Griewank 26 28 94 1.1e+2 57 61 2.8e�4
Penalty #1 3.6e+3 3.5e+4 1.3e+7 3.5e+7 2.3e+6 4.4e+6 5.5e�2
Penalty #2 7.4e+5 7.9e+5 4.0e+7 6.4e+7 9.6e+6 1.6e+7 7.8e�3
Quartic 0.094 0.2 18 28 3.6 5.8 9.0e�7
Rastrigin 21 23 68 82 40 50 1.1e�4
Rosenbrock 2.5e+2 2.4e+2 1.0e+3 1.6e+3 5.6e+2 6.6e+2 2.1e�2
Schwefel 1.2 9.2e+3 1.5e+4 4.7e+4 7.7e+4 1.9e+4 2.6e+4 1.5e�8
Schwefel 2.21 41 48 82 88 66 69 3.3e�3
Schwefel 2.22 18 17 37 39 28 29 2.8e�3
Schwefel 2.26 1.8e+3 2.3e+3 5.2e+3 4.9e+3 3.4e+3 3.7e+3 2.9e�3
Sphere 5.3 8.9 32 34 18 21 1.8–3
Step 2.9e+3 3.1e+3 1.2e+4 1.3e+4 6.4e+3 7.4e+3 1.6e�3
BBO wins 77% 85% 100% –

Table 16
Comparison between BBO and GA/GUR performance on 30-dimensional benchmark problems with a population size of 20. The ‘‘Prob.’’ column shows the
probability that the BBO and GA/GUR results are from the same distribution.

BBO best GA best BBO ave. GA ave. BBO r GA r Prob.

Ackley 7.0 7.3 12.0 12.6 9.4 10 2.2e�11
Fletcher 8.2e+4 1.5e+5 4.4e+5 6.0e+5 2.6e+5 3.1e+5 4.2e�5
Griewank 11 17 48 53 26 31 2.2e�6
Penalty #1 19 52 5.0e+6 1.3e+7 2.2e+5 6.3e+5 6.7e�3
Penalty #2 1.1e+5 3.6e+3 9.6e+6 1.6e+7 1.8e+6 2.7e+6 3.0e�3
Quartic 0.0021 0.0032 4.6 8.1 0.46 0.87 4.0e�3
Rastrigin 10 11 36 37 21 25 6.2e�7
Rosenbrock 1.3e+2 93 6.8e+2 6.2e+2 3.2e+2 3.6e+2 2.8e�6
Schwefel 1.2 6.9e+3 1.2e+4 2.3e+4 3.5e+4 1.4e+4 2.0e+4 8.1e�12
Schwefel 2.21 36 45 69 78 53 59 3.2e�13
Schwefel 2.22 7.9 9.4 24 30 16 18 3.1e�7
Schwefel 2.26 1.3e+3 1.2e+3 3.0e+3 3.3e+3 2.1e+3 2.4e+3 1.9e�6
Sphere 3.4 5.3 18 19 8.1 11 1.6e�4
Step 1.1e+3 2.0e+3 5.0e+3 7.7e+3 2.8e+3 3.8e+3 6.6e�6
BBO wins 79% 93% 100% –
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indicate which algorithm can find the best solution over multiple runs. The numbers in the ‘‘Ave.’’ columns show the average
performance of 100 Monte Carlo simulations and indicate which algorithm performs best on average. The numbers in the ‘‘r’’
columns show the standard deviation of the 100 Monte Carlo results and indicate which algorithm is the most robust and
consistent from one run to the next. The numbers in the ‘‘Prob.’’ columns are from the results of a t-test, and indicate the
probability that the BBO and GA/GUR results are from the same probability distribution. We obtained extremely low num-
bers in the ‘‘Prob.’’ columns because we ran so many simulations (100), which gives us a high confidence that the difference
between BBO and GA/GUR is statistically significant. Figs. 9–12 show the average BBO and GA/GUR results, normalized to the
lowest of the two values for each benchmark.

Appendix C

Tables 15 and 16 give a detailed breakdown of the first two rows of Table 6 and compare BBO and GA/GUR performance
for different population sizes. The data in each table were generated using 30-dimensional benchmark problems, no elitism,
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Fig. 13. Comparison between average BBO and GA/GUR performance on 30-dimensional benchmark problems with a population size of 10. Performance
numbers are taken from the ‘‘Ave.’’ columns of Table 15 and are normalized to the better (smaller) of the results of the two algorithms. The 14 categories
along the horizontal axis correspond to the 14 benchmarks in Table 15.
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Fig. 14. Comparison between average BBO and GA/GUR performance on 30-dimensional benchmark problems with a population size of 20. Performance
numbers are taken from the ‘‘Ave.’’ columns of Table 16 and are normalized to the better (smaller) of the results of the two algorithms. The 14 categories
along the horizontal axis correspond to the 14 benchmarks in Table 16.
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and a mutation rate of 1%. Note that the third row of Table 6 represents the same data as the fourth row of Table 5, and so
Table 14 in Appendix 2 gives a detailed breakdown of the third row of Table 6. Figs. 13 and 14 show the average BBO and GA/
GUR results, normalized to the lowest of the two values for each benchmark.
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