
Oppositional Biogeography-Based Optimization for
Combinatorial Problems

Mehmet Ergezer, Student Member, Dan Simon, Senior Member, IEEE
Cleveland State University
Cleveland, OH 44115

Email: m.ergezer@csuohio.edu

Abstract—In this paper, we propose a framework for employ-
ing opposition-based learning to assist evolutionary algorithms
in solving discrete and combinatorial optimization problems. To
our knowledge, this is the first attempt to apply opposition to
combinatorics. We introduce two different methods of opposi-
tion to solve two different type of combinatorial optimization
problems. The first technique, open-path opposition, is suited
for combinatorial problems where the final node in the graph
does not have be connected to the first node, such as the graph-
coloring problem. The latter technique, circular opposition, can
be employed for problems where the endpoints of a graph are
linked, such as the well-known traveling salesman problem (TSP).
Both discrete opposition methods have been hybridized with
biogeography-based optimization (BBO). Simulations on TSP
benchmarks illustrate that incorporating opposition into BBO
improves its performance.
Index Terms—Biogeography-based optimization, opposition,

combinatorics, discrete optimization, evolutionary algorithms,
graph-coloring problem, traveling salesman problem.

I. INTRODUCTION

Bio-inspired computing has been a fast-growing area in
machine learning, producing popular topics such as artificial
neural networks [1] and genetic algorithms [2]. Bio-inspired
algorithms mimic the time-proven techniques developed in na-
ture to tackle challenging tasks such as learning mechanisms or
minimum seeking. Biogeography-based optimization (BBO)
[3], [4] is an evolutionary algorithm, derived from the study
of biogeography. BBO is inspired by the migration of species
amongst islands and imitates this pattern to solve optimization
problems.
Opposition-based learning (OBL) was first proposed as

a machine intelligence scheme for reinforcement learning
[5], [6] and has been employed to improve soft computing
methods such as fuzzy systems [7], [8] and artificial neural
networks [9]–[12]. Studies [13]–[16] illustrated the capabilities
of OBL for solving continuous domain optimization problems
by combining it with differential evolution. Since then, OBL
has been employed to improve the success rate of various
evolutionary algorithms such as biogeography-based optimi-
zation [17], particle swarm optimization [18]–[21], ant colony
optimization [22], [23] and simulated annealing [24] in a wide
range of fields from image processing [8], [25], [26] to system
identification [27], [28].
Our previous research showed that augmenting BBO with

opposition increased the success rate of BBO while reducing
the computational effort for continuous domain problems

[17]. In the meantime, BBO has been applied to discrete
optimization problems such as the traveling salesman (TSP)
[29]–[31] and knapsack problems [4]. Our goal is to show
that OBL, which has improved continuous optimization, can
also be modified alongside BBO to solve discrete problems
including NP-complete problems such as graph coloring.
We refer to a graph as open if the endpoints of a path are

not linked, and as closed if the endpoints are connected. We
propose two novel discrete domain opposition algorithms for
open and closed combinatorial problems. Section II reviews
OBL methods for continuous domain problems and proposes
two new techniques for combinatorial optimization. Section III
provides an overview of BBO as an evolutionary algorithm and
outlines oppositional BBO (OBBO). Section IV defines the
vertex-coloring problem and the TSP and presents our com-
parison of oppositional BBO and standard BBO. Concluding
remarks are offered in Section V.

II. OPPOSITION IN OPTIMIZATION

This section reviews opposition as previously defined in
the continuous domain and introduces open-path and circular
opposition to solve open and closed combinatorial problems.

A. Opposition in Continuous Domain

Opposition-based learning has different variants employed
for solving continuous domain optimization problems. These
variants include opposition, quasi-opposition and quasi reflec-
tion. A variable, x̂, is reflected through the center of a domain
to create its opposite, x̂o as defined below.

Definition Let x̂ be any real number ∈ [a, b]. Its opposite, x̂o,
is defined as

x̂o = a+ b− x̂ (1)

Quasi-opposition, defined below, reflects a variable to a ran-
dom point between the center of the domain and x̂o.

Definition Let x̂ be any real number ∈ [a, b]. Its quasi-
opposite point, x̂qo, is defined as

x̂qo = rand(c, x̂o) (2)

where c is the center of the interval [a, b] and can be calculated
as (a + b)/2, and rand(c, x̂o) is a random number uniformly
distributed between c and x̂o.

978-1-4244-7833-0/11/$26.00 ©2011 IEEE

Quasi-reflection, defined below, shifts the variable x̂ to a
random point between the center of the domain and x̂.

Definition Let x̂ be any real number and x̂ ∈ [a, b]. Then the
quasi-reflected point, x̂qr , is defined as

x̂qr = rand(c, x̂) (3)

where rand(c, x̂) is a random number uniformly distributed
between c and x̂.

Of three opposite points defined above, reference [17] mathe-
matically proves that quasi-reflection yields the highest prob-
ability of being closer to the solution of the optimization
problem. The proof assumes that the solution is uniformly
distributed in the domain and the problem is one-dimensional.
Simulation results for higher dimensions yield similar results.
The definitions provided for continuous domain opposition in
Eqs. 1-3 are for one-dimensional variables; however, they can
easily be extended for a multidimensional search space.
Figure 1 illustrates the various opposite points ∈ [a, b].

Assuming that x̂ is a solution candidate in an evolutionary
algorithm (EA), its opposite and the range for its quasi-
opposite and quasi-reflection are shown in this figure.

a bcx̂ x̂o

x̂qr︷ ︸︸ ︷ x̂qo︷ ︸︸ ︷

Fig. 1. Opposite points defined in domain [a, b]. c is the center of the domain
and x̂ is an EA individual. x̂o is the opposite of x̂, and x̂qo and x̂qr are the
quasi-opposite and quasi-reflected points, respectively.

B. Opposition in Discrete Domain

The previous research that has been published on opposition
is for solving continuous domain optimization problems. Re-
cently, there has been research to extend BBO to combinatorial
problems such as the traveling salesman problem (TSP) [29]–
[31]. Oppositional learning, created for accelerating a contin-
uous search space, can also be modified to be used alongside
BBO to solve combinatorial problems, such as graph-coloring
and TSP.
We recognize that attempting to apply opposition to a TSP

path by simply reversing that path is meaningless because the
reversed path will yield the same cost as the original path. For
example, in a TSP, tour (1, 2, 3, 4) and its opposite tour, (4,
3, 2, 1), have the same cost because all of the cities preserve
their neighbors. Therefore a different definition of opposition
is needed. For the TSP, we define an opposite path as a path
that maximizes the distance between the adjacent vertices in
the original path. Based on this definition, a tour may have
more than one opposite.
We propose two new definitions of opposition in discrete

space. The first proposed algorithm is for open graph prob-
lems, where the final node may be disconnected from the
first node, such as the graph-coloring problem. The latter
opposition method is for closed walk problems, where the final
node is linked to the first node, such as the symmetric TSP.

C. Open-path Opposition

The first method of opposition for discrete domain problems
that we propose is open-path opposition. Open path are those
that we complete their path when they reach the last vertex on
the path. An example of such a problem would be the vertex
coloring problem. Refer to Section IV-B for more information
on graph-coloring.
In order to implement open-path opposition, proximities

between nodes are calculated. If nodes share an edge so that
they are directly connected, their proximity is defined as one.
If nodes connected through another node, their proximity is
two. If nodes are connected through two nodes, their proximity
is three, and so on. Consider a path of four nodes, sorted as
(1, 2, 3, 4). Table I lists the proximity between each nodes.

TABLE I
PROXIMITY OF NODES (1, 2, 3, 4) FOR CALCULATING THE OPPOSITE PATH.

Node 1 Node 2 Proximity

1 2 1
1 3 2
1 4 3
2 3 1
2 4 2
3 4 1

The opposite of this path would be a path that maximizes
the proximity between adjacent nodes while minimizing the
proximity between further nodes. Table II lists the original
path and its calculated opposite. Numbers above the arrows
illustrate the proximity between the nodes in the original path
as shown in Table I. The goal of open-path opposition is
to maximize the total proximity in a path by spreading the
adjacent nodes apart. We can say that the greater the total
proximity, the greater is the opposition. The maximum total
proximity achievable for our example is seven and it is shown
in Table II as the exact opposite path. A less opposite path,
named greedy opposite, is also shown in the table. The greedy
opposite path uses a greedy algorithm to quickly calculate the
approximate opposite of a given path, although, it might not
yield the highest degree of opposition.

TABLE II
OPPOSITE PATHS OF NODES IN A TOUR (1, 2, 3, 4) .

Tour Path and proximities Total Proximity

EA Individual 1
1−→ 2

1−→ 3
1−→ 4 3

Exact Opposite 3
2−→ 1

3−→ 4
2−→ 2 7

Greedy Opposite 1
3−→ 4

2−→ 2
1−→ 3 6

Notice that calculating the exact opposite is a combinatorial
problem of its own, therefore a greedy approximation is
developed. The greedy opposite is implemented to maximize
the proximity one city at a time. For this example, based on
Table I, nodes 1 and 4 have the highest distance between them,
so they start the greedy opposite tour. Then, we find the node
with the highest proximity to follow the previously discovered

city, and continue until the tour is completed. Because the
greedy algorithm seeks the local optimum, it is unsuccessful
in finding the exact opposite even for such a small problem.
However, note that if we begin with city 3, then the greedy
algorithm will find the exact opposite in this example.
Since there is no randomness involved in the definition of

the opposite path, a greedy opposite path can be defined at
the beginning of a program based on the node count and the
opposite population can be created based on this path to save
processing time. Reconsider of our example of four nodes.
Seeing that the output of the greedy opposition algorithm is
deterministic, we can use our greedy path from Table II to
calculate the opposite of any other four-node path. To do this,
we refer to (1, 2, 3, 4) as a list of node indices, instead of a
list of nodes. Therefore, we can map any four-node map to its
opposite.
For a given number of variables in a combinatorial problem,

we can calculate its greedy opposite by using Algorithm 1.

Algorithm 1 Open-path greedy opposite algorithm
1: procedure GREEDY OPPOSITE PATH(n) � n is the
number of nodes

2: for each node index ni do
3: if ni is odd then
4: Oni =

ni+1
2 � Oni is the opposite node index

5: else ni is even
6: Oni = n+ 1− ni

2
7: end if
8: end for
9: return Oni

10: end procedure

For the four-node problem, the greedy algorithm yields
the greedy opposite path: 1 → 4 → 2 → 3. This greedy
algorithm can be used to accelerate the convergence rate of
various combinatorial problems, including the graph-coloring
problem.

D. Circular Opposition

In Section II-C, we discussed opposition on a open path.
However, some problems, such as the symmetric TSP, are
closed since the endpoints of the graph are connected. Open-
path opposition will not yield a high degree of opposition
for these cases as it assumes that the extreme vertices have
low proximity and the open-path algorithm attempts to bring
them closer. Therefore, here we propose the opposite cycle as
an alternative to the opposite path for problems with closed
paths.
On a symmetric TSP, given a sequence of cities, starting at

any city on the path, moving in either direction, we will return
to our starting point and travel the same amount regardless
of where we start. Thus, a closed path can be seen as a
circular tour. Fig. 2 illustrates a symmetric TSP with eight
cities on a circular path. This is an intuitive representation of
this problem.

1

2

3

4

5

6

7

8

Fig. 2. Eight-city closed path where the path is represented as a circle.

Based on Fig. 2, we can see that to maximize the proximity
between the adjacent vertices, we must travel to the opposite
side of the circle. This is our definition of opposition for
problems with a closed path. Fig. 3 illustrates the opposite
of each city in the tour.

1

2

3

4

5

6

7

8

Fig. 3. Eight-city closed path problem with opposite cities indicated across
the circular path.

Although Fig. 3 shows the opposite of each city, it does not
indicate an opposite path. It reveals that if we start at city 1,
its opposite is city 5. But where do we go from there? The
opposite of city 5 is 1, but we cannot revisit the same city. The
next best thing for us is to travel to city 2 or 8 since both would
yield the same amount of opposition. We can choose either of
these cities randomly or based on the opposition order, which
is explained below. We continue this process until all cities
are visited.
We can define permutations on our opposite circuits based

on the direction in which we move around the circular path.
We call this the order of opposition and four possibilities of
it are presented in Table III. These permutations are named
according to the direction we choose to advance. For exam-
ple, CCW opposite indicates that after reaching an opposite
city, we always move counter-clockwise around the circle to
progress on the path. Thus, after we visit city 5, we start
moving counter-clockwise to find the furthest vertex, in this
case city 2. The CW opposite is similar, but advances in the
clockwise direction to form an opposite cycle. Notice that the

TABLE III
PERMUTATIONS OF OPPOSITE TOUR OF CITIES (1, 2, . . . , 7, 8). TOURS

ARE NAMED AFTER THE DIRECTION FOLLOWED AROUND THE OPPOSITION

CIRCLE AFTER EACH CITY VISIT. FOR EXAMPLE, CW OPPOSITE
INDICATES THAT FROM THE CURRENT LOCATION, ALGORITHM MUST

TRAVEL CLOCKWISE AROUND THE OPPOSITE CIRCLE TO FIND THE

LARGEST OPPOSITION.

Path Name Path Followed

EA Individual 1 → 2 → 3 → 4 → 5 → 6 → 7 → 8
CW Opposite 1 → 5 → 2 → 6 → 3 → 7 → 4 → 8
CCW Opposite 1 → 5 → 8 → 4 → 7 → 3 → 6 → 2
CW-CCW Opposite 1 → 5 → 2 → 6 → 8 → 4 → 3 → 7
CCW-CW Opposite 1 → 5 → 8 → 4 → 2 → 6 → 7 → 3

CW and CCW paths our after city 5 are mirror images of each
other and yield the same amount of opposition. We can define
the CW opposite path as follows:

Definition Let n be the number of nodes in a graph and P be
an even node cycle. The CW opposite path, PCW

o , is defined
as

P = [1, 2, . . . , n] (4)

PCW
o =

[
1, 1 +

n

2
, 2, 2 +

n

2
, . . . ,

n

2
− 1, n− 1,

n

2
, n

]

The other two techniques, CW-CCW and CCW-CW op-
positions, reverse direction after each decision. For instance,
if CW-CCW opposition moves clockwise to get to city 2, it
would then advance counter-clockwise to city 6. Notice that
CW-CCW and CCW-CW oppositions create less opposition
than CW and CCW by themselves as we progress around the
circle.
In our algorithm, we define the middle node to be the

reflection point, rp, calculate opposite cities based on rp
and link every city to its opposite. As future work, different
reflection points can be selected to create different levels of
opposition, analogous to x̂qoand x̂qr in the continuous domain.
Notice that we cannot assign opposite cities as defined in

Eq. 4 if n is odd. If we follow the opposite circle (Fig. 3) in
an odd-length cycle, the opposite point would end up being
between two cities. Then, the CW or CCW option would
specify which direction to travel around the circle to find the
opposite city.
One way of implementing CW opposition in an odd-length

graphs is to add an auxiliary node to the end of the path to
complete the city count to an even number. We then calculate
the CW opposite of the tour and remove the auxiliary city
from the end of tour.

III. PROPOSED ALGORITHM

A. Biogeography-based Optimization

Biogeography-based optimization (BBO) is an evolutionary
algorithm proposed as a heuristic optimization technique [3].
BBO is inspired by the science of biogeography which stud-
ies the temporal and spatial distribution of species amongst
islands.
Biogeography has been popularized by Darwin’s zoological

research on remote islands [32] and its contributions to the

theory of evolution [33]. Islands provided all the necessary
tools to biologists to study evolution since there is a large
quantity of islands to study and they are isolated and thus
minimally affected by outside disturbances.
Inspired by the success of biogeography in the theory of

evolution, BBO was developed as an evolutionary algorithm
for continuous domain problems, although the original paper
searched over a discrete domain for optimal solutions (i.e.,
continuous problems were discretized) [3]. In BBO, a pop-
ulation of solution candidates are generated, each candidate
representing an island. These islands are assigned immigration
and emigration rates based on their fitness. The variables in
each solution candidate are symbolized by species living on
that island. Throughout iterations, species migrate amongst the
islands based on the immigration and emigration rates to find
a better habitat.
For instance, a solution candidate with higher fitness, a

better solution, will have a higher emigration rate, so that it
can share its features with less fit islands. At the same time,
the same fitter island will have a lower immigration rate in
order that it is less likely to be spoiled by migrations from
less fit islands. A worse solution candidate will be assigned a
high immigration rate in the hopes that the new species will
enrich the fitness of the island.
To solve a continuous optimization problem , we search for

the best solution that exists within a given domain. Combina-
torial problems, such as the ones discussed in this research, are
ordering type problems. We are given a list of all vertices that
must form the solution and we are to find the best sequence of
these vertices that will minimize the cost function. BBO has
been employed to solve numerous engineering optimization
problems in continuous domains [34]–[39]. References [30],
[31] present migration schemes to solve the traveling salesman
problem and compare BBO’s performance to that of other
evolutionary algorithms, including genetic algorithms and ant
colony optimization. In this paper, we follow a migration
pattern which is inspired by the inver-over operator [40] and
modified for BBO in [41].
In the spirit of original BBO, all the islands are assigned

emigration and immigration rates proportional to their fitness
rankings. We then perform roulette wheel selection to deter-
mine an immigrating and an emigrating island, Ii and Ie, based
on these rates, and randomly choose a city in the immigrating
island to be our migration point, Mp. Next, we seek for the
migration point in the emigrating island and locate the adjacent
vertex as the flipping point, Fp. A new island is created from
the immigrating island by flipping the sequence of vertices
between Mp and Fp. Algorithm 2 presents the pseudocode
for combinatorial BBO migration.
Algorithm 2 can be illustrated with the following example.

Let the randomly selected migration point be Mp = 3 and the
immigrating and emigrating islands be

Ii = [1 → 3Mp → 4 → 6 → 2 → 5]

Ie = [6 → 4 → 3 → 2Fp → 1 → 5]

Considering that in Ie,Mp is followed by city 2, Fp = 2. We

Algorithm 2 Combinatorial BBO migration
1: procedure MIGRATION(Ii, Ie)
2: Mp = rand(Ii(city)) � Random migration point
3: Fp = Ie(Mp + 1) � Flip point is adjacent to Mp

4: Inew =Flip Ii(Mp + 1 : Fp)
5: return Inew
6: end procedure

then flip the cities between Mp and Fp in Ii and obtain

Inew = [1 → 3Mp → 2Fp → 6 → 4 → 5]

B. Oppositional Biogeography-based Optimization

The opposition algorithm is added to BBO as a diversity
mechanism to improve BBO’s convergence rate. The outline of
the oppositional BBO algorithm is presented in Algorithm 3.
In order to save computational time, the opposite population
has a chance of being generated 30% of the time. This proba-
bility is determined by the OppositionJumpingRate ∈ [0, 1]
parameter as specified in Algorithm 3.

Algorithm 3 Oppositional BBO
1: procedure OBBO(Problem,Opposition method)
2: Randomly generate initial population, P
3: Generate the opposite of initial population, OP
4: Maintain the fittest amongst P and OP
5: while Generation ≤ gen limit do
6: Perform BBO Migration � Algorithm 2
7: Remove duplicates from population
8: Calculate the fitness of P
9: if random ≤ Opposition Jumping Rate then
10: Create the opposite population, OP
11: Calculate the fitness of OP
12: Maintain the fittest amongst P and OP
13: end if
14: Restore Elite individuals
15: end while
16: return Best Individual
17: end procedure

IV. EXPERIMENTAL RESULTS

In this section, 16 vertex coloring and 16 traveling salesman
benchmark problems are simulated on MATLAB R© with the
settings listed in Table IV. The tabulated results are the
mean of the best findings over 20 independent Monte Carlo
simulations at the end of 500 generations.

TABLE IV
SIMULATION SETTINGS FOR COMBINATORIAL PROBLEMS.

Variable Value

Population size 50
Generation limit 500
Number of elites 3
Monte Carlo runs 20
Opposition Jumping Rate 0.3

TABLE V
SYMMETRIC TSP BENCHMARK PROBLEMS AND THEIR OPTIMAL RESULTS

AS POSTED BY TSPLIB [48].

Benchmark Optimal Solution Dimension

att532 27,686 532
berlin52 7,542 52
bier127 118,282 127
ch130 6,110 130
d18512 645,238 18,512
kroA150 26,524 150
kroA200 29,368 200
kroC100 20,749 100
lin105 14,379 105
lin318 42,029 318
p654 34,643 654
rat575 6,773 575
rl11849 923,288 11,849
st70 675 70
usa13509 19,982,859 13,509
vm1084 239,297 1,084

A. Traveling salesman problem

The TSP [42] is a well-known closed path combinatorial
problem. The TSP is classified as an NP-hard problem and
currently there is no polynomial-time algorithm that can
guarantee an optimal solution. In the TSP, we are given a list
of cities and their coordinates. We sort this list to minimize
the length of the closed path traveled while only visiting each
city once. This problem is based on the challenge faced by
the traveling salesman who tries to find the shortest route
which would allow him to visit all the cities once before
returning to the departure city. The TSP represents many real-
world applications such as the vehicle routing problem (i.e.
for postal services or buses) [43]–[45], and printed circuit
board (PCB) drilling problems [46], [47]. For instance, to
manufacture a PCB, tens of thousands of holes must be drilled
to place components. The solution of the TSP, where the cities
represent the holes, would portray the path the drill must
follow from one hole to the next.
For this paper, we focus solely on the symmetric traveling

salesman problem where the distance between two nodes
is identical when traveling in either direction. The set of
TSP benchmark problems are borrowed from TSPLIB [48].
Table V lists these benchmark problems, their dimensions and
minimum costs. For our simulations, we chose to implement
clockwise (CW) circular opposition, Table III, as our opposite
algorithm.
The mean (out of 20 Monte Carlo simulations) of the

best results obtained from BBO and oppositional BBO is
represented in Table VI along with the geometric mean. BBO
with CW circular opposition, BBO/CO, is able to find a shorter
route for 14 of the benchmark problems while BBO has a
better route for two problems. Note that we use a relatively
small population size and relatively few generations, so the
BBO solutions are not close to the optimal solutions. However,
our main point in this paper is to perform relative comparison
between BBO and BBO/CO.

TABLE VI
MEAN OF THE BEST SOLUTIONS OBTAINED BY BBO AND BBO WITH

CIRCULAR OPPOSITION (BBO/CO) TO SYMMETRIC TSP BENCHMARK
PROBLEMS.

Benchmark BBO BBO/CO

att532 1,154,304 1,140,103
berlin52 9,795 9,811
bier127 302,056 298,700
ch130 20,552 20,304
d18512 58,521,418 58,369,040
kroA150 109,793 108,651
kroA200 169,256 165,191
kroC100 57,509 57,799
lin105 42,005 41,661
lin318 375,896 374,011
p654 1,440,864 1,422,779
rat575 83,835 82,699
rl11849 85,134,513 84,926,068
st70 1,162 1,147
usa13509 2,105,421,221 2,098,340,568
vm1084 7,208,117 7,142,633

Geometric Mean 493,973 489,864

B. Vertex Coloring

Vertex coloring [49] is the most studied graph-coloring
problem since the other coloring problems can be transformed
into it. Graph-coloring has many real-word applications related
to scheduling, including register allocation [50], wireless net-
work testing [51] and final exam timetables at universities [52].
In vertex coloring, we are giving a a graph G(V,E) denot-

ing list of countries on a map (vertices) and their neighbors
(edges). The neighboring cities are represented as vertices that
are linked with an edge. Connected vertices cannot share the
same color. The goal is to find the minimum number of of
colors needed to color the vertices. This number is denoted
as the chromatic number, χ(G). Vertex coloring is an NP-
complete problem.
Figure 4 illustrates a three-color graph-coloring problem and

its solution. In this problem, there are eight countries (vertices)
and 13 connections (edges). The minimum number of colors
needed is χ(G) = 3.

Fig. 4. Example of a three-color map with eight vertices and 13 edges. The
figure on the right is the minimally colored map.

Various evolutionary approaches have been created to solve
the graph-coloring problem [53]–[55]. Our method is a hybrid
between an evolutionary algorithm (BBO) and the greedy
algorithm described in Algorithm 5. This technique is similar

to the hybrid genetic algorithm scheme presented in [56]. The
role of BBO is to sort the list of countries and to provide this
re-ordered list to the greedy algorithm which quickly assigns
a color to each country. This simple methodology does not
guarantee that an optimal solution can be found, however, it
stores the vertices as a list so that open-path opposition can
be easily applied.
Each BBO individual in the population stores a list of ver-

tices as its solution features (islands). Vertices are rearranged
through the generations and conveyed to the greedy algorithm
to minimize the chromatic number. Algorithm 4 outlines the
hybrid BBO/Greedy algorithm.

Algorithm 4 Vertex coloring with BBO
1: procedure BBO COLORING(V,E)
2: Initialize population by shuffling the order of vertices
3: while Generation count is not reached do
4: Perform BBO migration on the order of vertices �
Algorithm 2

5: Cost function calls Greedy Vertex � Algorithm 5
6: end while
7: end procedure

The goal of the greedy algorithm is to quickly assign a valid
color to each country based on the order of vertices generated
by BBO. Algorithm 5 presents the pseudocode for the greedy
vertex coloring algorithm.

Algorithm 5 Greedy vertex coloring
1: procedure GREEDY VERTEX(V,E)
2: for each vertex do
3: Find all of its neighbors
4: Find the colors of all the neighbors
5: Assign the smallest available color index that is
not assigned to a neighbor

6: end for
7: return number of colors
8: end procedure

Table VII lists the benchmark problems borrowed from [57]
which are assembled from various resources [53], [58], [59].
The table lists the number of vertices and edges for each
problem along with the chromatic number, χ(G), if available.

Simulation results for graph-coloring benchmarks are de-
picted in Table VIII. These are the mean of the best results
obtained from each algorithm after 20 independent Monte
Carlo simulations. We note that BBO augmented with open-
path opposition (BBO/OPO) reaches the chromatic number in
six of the 16 benchmarks within 500 generations. However,
it can outperform BBO in only one problem. As future work,
different degrees of open-path opposition can be created and
compared against BBO.

TABLE VII
LIST OF BENCHMARK PROBLEMS ALONG WITH THEIR OPTIMAL SOLUTION
FOR VERTEX COLORING. ”NA” INDICATES NOT AVAILABLE (I.E., NOT

KNOWN).

Benchmark χ(G) # Vertices # Edges

anna 11 138 493
david 11 87 406
DSJC125.1 NA 125 1472
DSJR500.1 NA 500 7110
huck 11 74 301
le450.5a 5 450 5714
miles750 31 128 2113
myciel3 4 11 20
myciel4 5 23 71
myciel5 6 47 236
myciel6 7 95 755
queen10.10 NA 100 2940
queen11.11 11 121 3960
queen5.5 5 25 160
queen6.6 7 36 290
queen7.7 7 49 476

TABLE VIII
MEAN OF THE BEST RESULTS OBTAINED BY BBO AND BBO/OPO

(OPEN-PATH OPPOSITION) ALGORITHMS AFTER 100 GENERATIONS FOR
GRAPH-COLORING PROBLEMS.

Benchmark BBO BBO/OPO

anna 11 11
david 11 11
DSJC125.1 11 12
DSJR500.1 19 20
huck 11 11
le450.5a 30 30
miles750 35 34
myciel3 4 4
myciel4 5 5
myciel5 6 7
myciel6 11 11
queen10.10 21 22
queen11.11 25 25
queen5.5 7 8
queen6.6 10 11
queen7.7 12 13

Geometric Mean 12.0 12.4

V. CONCLUSION

In this paper, we presented the TSP as a circular graph
and graph coloring as an open-ended graph. Corresponding
opposition algorithms, circular and open-path opposition, have
been introduced to assist our evolutionary algorithm of choice,
BBO, to solve combinatorial optimization problems. The ob-
jective of both opposition methods was to create an opposite
path by maximizing the proximity between adjacent nodes.
The circular opposition technique was developed for graphs

where the last node was linked to the first one. The circular
opposition was tested on 16 traveling salesman problems and
was found to outperform standard BBO in 14 of them.
The open-path opposition was introduced for open-ended

combinatorics and was tested on 16 graph-coloring problems.
BBO/OPO was able to reach the optimal solution in six of
these benchmarks, but could only surpass BBO on one of the
problems.

Further research could focus on combining the proposed
opposition methods with other EAs and comparing the effect
of opposition on other combinatorial optimization algorithms.
The statistical significance of the oppositional EAs should
also be analyzed. Furthermore, future research efforts could
concentrate on exploring different degrees of opposition, mo-
tivated by its continuous-domain counterpart, for open- and
closed-path combinatorics.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their comments and suggestions that helped to improve
this paper. This work was supported by NSF Grant 0826124
in the CMMI Division of the Engineering Directorate.

REFERENCES

[1] J. Dayhoff and J. DeLeo, “Artificial neural networks,” Cancer, vol. 91,
no. S8, pp. 1615–1635, 2001.

[2] Z. Michalewicz, Genetic algorithms + data structures = evolution
programs (3rd ed.). London, UK: Springer-Verlag, 1996.

[3] D. Simon, “Biogeography-based optimization,” IEEE Transactions on
Evolutionary Computation, vol. 12, no. 6, pp. 702–713, 2008.

[4] D. Simon, M. Ergezer, and D. Du, “Markov models of biogeography-
based optimization,” IEEE Transactions on Systems, Man, and Cyber-
netics - Part B, vol. 41, pp. 299–306, 2011.

[5] H. Tizhoosh, “Reinforcement learning based on actions and opposite
actions,” in International Conference on Artificial Intelligence and
Machine Learning, 2005.

[6] ——, “Opposition-based reinforcement learning,” Journal of Advanced
Computational Intelligence and Intelligent Informatics, vol. 10, no. 4,
pp. 578–585, 2006.

[7] H. Tizhoosh and F. Sahba, “Quasi-global oppositional fuzzy threshold-
ing,” pp. 1346–1351, 2009.

[8] H. Tizhoosh, “Opposite fuzzy sets with applications in image process-
ing,” in Proceedings of International Fuzzy Systems Association World
Congress, Lisbon, Postugal, 2009, pp. 36–41.

[9] M. Ventresca and H. Tizhoosh, “Improving the convergence of back-
propagation by opposite transfer functions,” in IEEE International Joint
Conference on Neural Networks, 2006, pp. 9527–9534.

[10] ——, “Opposite transfer functions and backpropagation through time,”
in Foundations of Computational Intelligence, 2007. FOCI 2007. IEEE
Symposium on. IEEE, 2007, pp. 570–577.

[11] M. Shokri, H. Tizhoosh, and M. Kamel, “Opposition-based q (lambda)
with non-markovian update,” in Proc. IEEE Symposium on Approximate
Dynamic Programming and Reinforcement Learning (ADPRL 2007),
Hawaii, 2007, pp. 288–295.

[12] M. Rashid and A. Baig, “Improved Opposition-Based PSO for Feedfor-
ward Neural Network Training,” in Information Science and Applica-
tions (ICISA), 2010 International Conference on, 2010, pp. 1–6.

[13] S. Rahnamayan, “Opposition-based differential evolution,” Systems De-
sign Engineering, University of Waterloo, 2007.

[14] S. Rahnamayan, H. Tizhoosh, and M. Salama, “Opposition-based dif-
ferential evolution,” IEEE Transactions on Evolutionary Computation,
vol. 12, no. 1, pp. 64–79, 2008.

[15] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Quasi-
oppositional differential evolution,” in Proc. IEEE Congress on Evo-
lutionary Computation CEC 2007, 2007, pp. 2229–2236.

[16] S. Rahnamayan and G. G. Wang, “Solving large scale optimization
problems by opposition-based differential evolution (ode),” WSEAS
Transactions on Computers, vol. 7, pp. 1792–1804, October 2008.

[17] M. Ergezer, D. Simon, and D. Du, “Oppositional biogeography-based
optimization,” in IEEE International Conference on Systems, Man and
Cybernetics, 2009, pp. 1009–1014.

[18] H. Wang, Y. Liu, S. Zeng, H. Li, and C. Li, “Opposition-based
particle swarm algorithm with cauchy mutation,” in IEEE Congress on
Evolutionary Computation, Singapore, 2007, pp. 4750–4756.

[19] F. Shahzad, A. Baig, S. Masood, M. Kamran, and N. Naveed,
“Opposition-Based Particle Swarm Optimization with Velocity Clamp-
ing,” Advances in Computational Intelligence, pp. 339–348, 2009.

[20] J. Tang and X. Zhao, “An enhanced opposition-based particle swarm op-
timization,” in Intelligent Systems, 2009. GCIS’09. WRI Global Congress
on, vol. 1. IEEE, 2009, pp. 149–153.

[21] Y. Chi and G. Cai, “Particle swarm optimization with opposition-based
disturbance,” in Informatics in Control, Automation and Robotics (CAR),
2010 2nd International Asia Conference on, vol. 2. IEEE, 2010, pp.
223–226.

[22] A. R. Malisia, “Investigating the application of opposition-based ideas
to ant algorithms,” Master’s thesis, University of Waterloo, 2007.

[23] A. Malisia, “Improving the exploration ability of ant-based algorithms,”
in Oppositional Concepts in Computational Intelligence. Springer,
2008, pp. 121–142.

[24] M. Ventresca and H. Tizhoosh, “Simulated annealing with opposite
neighbors,” in Foundations of Computational Intelligence, 2007. FOCI
2007. IEEE Symposium on. IEEE, 2007, pp. 186–192.

[25] F. Khalvati, H. Tizhoosh, and M. Aagaard, “Opposition-based window
memoization for morphological algorithms,” in IEEE Symposium on
Foundations of Computational Intelligence, Honolulu, Hawaii, USA,
2007, pp. 425–430.

[26] S. Rahnamayan and H. Tizhoosh, “Image thresholding using micro
opposition-based differential evolution (micro-ode),” in Evolutionary
Computation, 2008. CEC 2008.(IEEE World Congress on Computational
Intelligence). IEEE Congress on. IEEE, 2008, pp. 1409–1416.

[27] D. Subudhi, B; Jena, “Nonlinear system identification using opposition
based learning differential evolution and neural network techniques,”
IEEE Journal of Intelligent Cybernetic Systems, vol. 1, pp. 1–13, 2009.

[28] B. Subudhi and D. Jena, “A differential evolution based neural network
approach to nonlinear system identification,” Applied Soft Computing,
vol. 11, pp. 861 – 871, 2011.

[29] D. Du, “Biogeography-based optimization: Synergies with evolutionary
strategies, immigration refusal and Kalman filters,” Master’s thesis,
Cleveland State University, 2009.

[30] H. Mo and L. Xu, “Biogeography migration algorithm for traveling
salesman problem,” Advances in Swarm Intelligence, pp. 405–414, 2010.

[31] Y. Song, M. Liu, and Z. Wang, “Biogeography-based optimization for
the traveling salesman problems,” in 2010 Third International Joint
Conference on Computational Science and Optimization. IEEE, 2010,
pp. 295–299.

[32] C. Darwin, “On the origin of species by means of natural selection, or
the preservation of favoured races in the struggle for life,” New York:
D. Appleton, 1859.

[33] R. H. MacArthur and E. O. Wilson, The Theory of Island Biogeography.
Princeton University Press, 1967.

[34] R. Rarick, D. Simon, F. Villaseca, and B. Vyakaranam, “Biogeography-
based optimization and the solution of the power flow problem,” in
IEEE International Conference on Systems, Man and Cybernetics, 2009.
IEEE, 2009, pp. 1003–1008.

[35] G. Lozovyy, P.; Thomas and D. Simon, “Biogeography-based optimi-
zation for robot controller tuning,” in Computational Modeling and
Simulation of Intellect: Current State and Future Perspectives. IGI
Global, 2011.

[36] H. Kundra and M. Sood, “Cross-Country Path Finding using Hybrid
approach of PSO and BBO,” International Journal, vol. 7, 2010.

[37] A. Bhattacharya and P. Chattopadhyay, “Biogeography-based optimiza-
tion for different economic load dispatch problems,” IEEE Transactions
on Power Systems, vol. 25, no. 2, pp. 1064–1077, 2010.

[38] V. Panchal, S. Goel, and M. Bhatnagar, “Biogeography based land cover
feature extraction,” inWorld Congress on Nature & Biologically Inspired
Computing. IEEE, 2010, pp. 1588–1591.

[39] M. Ergezer, B. E. Abali, and D. Simon, “Biogeography-based optimi-
zation identifies material coefficients as an inverse problem,” January
2011, poster session presented at NSF CMMI Research and Innovation
Conference, Atlanta, GA.

[40] G. Tao and Z. Michalewicz, “Inver-over operator for the TSP,” in
Parallel Problem Solving from NaturePPSN V. Springer, 1998, p. 803.

[41] D. Du and D. Simon, “Biogeography-based optimization for the travel-
ing salesman problem,” in Proceedings of the ASME 2011 International
Design Engineering Technical Conferences & Computers and Informa-
tion in Engineering Conference, Submitted.

[42] J. Kruskal Jr, “On the shortest spanning subtree of a graph and the
traveling salesman problem,” Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48–50, 1956.

[43] N. Christofides, A. Mingozzi, and P. Toth, “The vehicle routing prob-
lem,” Revue Française d’Informatique et de Recherche Opérationnelle,
vol. 10, no. 2, pp. 55–70, 1976.

[44] G. Laporte, “The vehicle routing problem: An overview of exact and
approximate algorithms,” European Journal of Operational Research,
vol. 59, no. 3, pp. 345–358, 1992.

[45] P. Toth and D. Vigo, The vehicle routing problem. Society for Industrial
Mathematics, 2002.

[46] V. Magirou and A. Nicolitsas, “The efficient drilling of printed circuit
boards,” Interfaces, vol. 16, no. 4, pp. 13–23, 1986.

[47] G. Onwubolu and M. Clerc, “Optimal path for automated drilling oper-
ations by a new heuristic approach using particle swarm optimization,”
International Journal of Production Research, vol. 42, no. 3, pp. 473–
491, 2004.

[48] G. Reinelt, “TSPLIB–A traveling salesman problem library,” INFORMS
Journal on Computing, vol. 3, no. 4, p. 376, 1991.

[49] F. Leighton, “A graph coloring algorithm for large scheduling problems,”
Journal of Research of the National Bureau of Standards, vol. 84, no. 6,
pp. 489–503, 1979.

[50] G. Chaitin, M. Auslander, A. Chandra, J. Cocke, M. Hopkins, and
P. Markstein, “Register allocation via coloring,” Computer Languages,
vol. 6, no. 1, pp. 47–57, 1981.

[51] S. Even, O. Goldreich, S. Moran, and P. Tong, “On the NP-completeness
of certain network testing problems,” Networks, vol. 14, no. 1, pp. 1–24,
1984.

[52] M. Carter, “A survey of practical applications of examination timetabling
algorithms,” Operations Research, vol. 34, no. 2, pp. 193–202, 1986.

[53] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon, “Optimization by
simulated annealing: an experimental evaluation; part II, graph coloring
and number partitioning,” Operations research, pp. 378–406, 1991.

[54] P. Galinier and J. Hao, “Hybrid evolutionary algorithms for graph
coloring,” Journal of Combinatorial Optimization, vol. 3, no. 4, pp. 379–
397, 1999.

[55] D. Costa and A. Hertz, “Ants can colour graphs,” Journal of the
Operational Research Society, vol. 48, no. 3, pp. 295–305, 1997.

[56] C. Fleurent and J. Ferland, “Genetic and hybrid algorithms for graph
coloring,” Annals of Operations Research, vol. 63, no. 3, pp. 437–461,
1996.

[57] M. Trick. (2010, August) Graph coloring instances. [Online]. Available:
http://mat.gsia.cmu.edu/COLOR/instances.html

[58] F. Leighton, “A graph coloring algorithm for large scheduling problems,”
Journal of Research of the National Bureau of Standards, vol. 84, no. 6,
pp. 489–503, 1979.

[59] D. Knuth, The Stanford GraphBase: a platform for combinatorial
computing. ACM Press, 1993.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

