
Oppositional Biogeography-Based Optimization
Mehmet Ergezer, Dan Simon, and Dawei Du

Cleveland State University
Department of Electrical and Computer Engineering

Cleveland, Ohio, USA
m.ergezer@csuohio.edu

Abstract—We propose a novel variation to biogeography-
based optimization (BBO), which is an evolutionary algorithm
(EA) developed for global optimization. The new algorithm
employs opposition-based learning (OBL) alongside BBO’s mi-
gration rates to create oppositional BBO (O BBO). Additionally,
a new opposition method named quasi-reflection is introduced.
Quasi-reflection is based on opposite numbers theory and we
mathematically prove that it has the highest expected probability
of being closer to the problem solution among all OBL methods.
The oppositional algorithm is further revised by the addition
of dynamic domain scaling and weighted reflection. Simulations
have been performed to validate the performance of quasi-
opposition as well as a mathematical analysis for a single-
dimensional problem. Empirical results demonstrate that with
the assistance of quasi-reflection, OBBO significantly outperforms
BBO in terms of success rate and the number of fitness function
evaluations required to find an optimal solution.

Index Terms—Biogeography-based optimization (BBO), evolu-
tionary algorithms, opposition-based learning, opposite numbers,
quasi-opposite numbers, quasi-reflected numbers, probability.

I. I NTRODUCTION

Evolutionary Algorithms (EA) are created to solve implicit
and explicit functions and, unlike many numerical methods,
do not require the objective function to be differentiable.In
fact, EAs do not require any information about the objective
function. This characteristic makes them a desirable method
for solving complex problems.

Biogeography-based optimization (BBO) [1] is a new EA
developed for global optimization. BBO is a generalization
of biogeography to EA. It is modeled after the immigration
and emigration of species between islands in search of more
friendly habitats. The islands represent the solutions andthey
are ranked by their island suitability index (ISI), where a higher
ISI signifies a superior fitness value. The islands are comprised
of solution features named suitability index variables (SIV),
equivalent to GA’s genes.

BBO is one of the newest evolutionary algorithms, but it
has already proven itself a worthy competitor to its better-
known siblings. The Markov analysis in [2], [3] proves that
BBO outperforms GA on simple unimodal, multimodal and
deceptive benchmark functions when used with low mutation
rates. Reference [4] provides experimental studies comparing
BBO’s performance to many other EA’s on a wide set of
benchmarks.

This work was supported by NSF Grant 0826124 in the CMMI Division
of the Engineering Directorate.

However, there is still some room left for improving BBO
since many other techniques have been developed to enhance
other EAs. In this paper, we adapt one such algorithm,
opposition-based learning (OBL), to BBO in an attempt to
attain BBO’s highest potential.

OBL is utilized by EAs to accelerate the convergence speed
by comparing the fitness of a solution estimate to its opposite
and keeping the fitter one in the population. Opposition-based
differential evolution (ODE) [5] was the first implementation
of OBL to EAs. Later, [6] demonstrated that quasi-opposite
points have a better convergence rate than opposite points.In
Section III, we provide the analytical expressions illustrating
the benefits of selecting quasi-opposite points in a single-
dimensional case. Later, we introduce quasi-reflected points
and demonstrate that quasi-reflection yields the highest proba-
bility of success while requiring less fitness computationsthan
other OBL algorithms. Additionally, we present the effects
of increased dimensions on opposite points. We add quasi-
reflection to BBO to create oppositional BBO (OBBO). In
OB BO , the OBL algorithm is further modified by dynamic
domain scaling and weighting the reflection amount based on
individual’s fitness.

The paper is organized as follows: Section II provides a
brief introduction to BBO. Section III defines the opposite
points, derives the expected probabilities of quasi-opposite
points’ distance to the solution for a single-dimensional case
and presents the effects of higher dimensions for all OBL
methods. Section IV describes the proposed OBBO algorithm.
Section V introduces the benchmark problems, the experi-
mental settings and discusses the results obtained. Finally,
Section VI states the conclusion and suggests future work.

II. BIOGEOGRAPHY-BASED OPTIMIZATION

One of the distinguishing features of BBO is that when
updating the population, BBO considers the fitness of the
immigrating and emigrating islands via the immigration and
emigration curves. Fig. 1 illustrates linear BBO immigration
and emigration curves. The worst solution has the highest
immigration rate; hence, it has a very high chance of borrowing
features from other solutions, helping it to improve for the
next generation. The best solution has a very low immigration
rate, indicating that it is less likely to be altered by the
other solutions. The emigration rate works similarly. Notethat
emigration in BBO does not mean that the emigrating island
loses a feature. For example, if a feature in island 1 migrates

978-1-4244-2794-9/09/$25.00c© 2009 IEEE SMC 2009

to island 2, then both islands 1 and 2 have this feature. The
worst solution is assumed to have the worst features; thus, it
has a very low emigration rate and a low chance of sharing
its features. On the other hand, the solution that has the best
features also has the highest probability of sharing them. For
this research, we implement partial immigration-based BBO
as described in [4].

Worst Solution Best Solution

M
ig

ra
tio

n
ra

te

Solutions sorted by fitness

←λ, immigration
rate

µ, emigration→
rate

Figure 1. Linear migration rates plotted against the sorted population.

III. O PPOSITION-BASED LEARNING

Opposition-based learning (OBL) is proposed in [7]. OBL
has first been utilized to improve learning and back prop-
agation in neural networks [8], and since then it has been
applied to many evolutionary algorithms such as differential
evolution [5], particle swarm optimization [9] and ant colony
optimization [10].

The philosophy of OBL is that natural learning is time
consuming because it is modeled after a very slow process.
For example, GA is modeled after the evolution of species
and it takes many life cycles for a species to evolve. On the
other hand, human society progresses at a much faster rate
via “social revolutions” [7]. Hence, if such a model could be
simulated, the learning process could be improved. Revolutions
are fast and changes are fundamental, whether in politics,
economics or any other context. OBL maps this theory to
machine learning and proposes to use opposite numbers instead
of random ones to quickly evolve the population.

The main principal of OBL is to utilize opposite numbers
to approach the solution. The inventors of OBL claim that a
number’s opposite is probably closer than a random number
to a solution. Thus, by comparing a number to its opposite, a
smaller search space is needed to converge to the right solution.
Later in this section, we prove that a quasi-opposite numberis
usually closer than a random number to the solution. We also
prove that a quasi-opposite number is usually closer than an
opposite number to the solution.

A. Quasi-opposition and Opposition Points

In [6], Rahnamayan introduces quasi-opposition-based
learning and proves that a quasi-opposite point is more likely to

be closer to the solution than the opposite point. In this section,
we prove how much quasi-opposition is better than opposition.
First, let us define opposite and quasi-opposite numbers in one
dimensional space. These definitions can easily be extendedto
higher dimensions.

Definition 1: Let x be any real number between[a, b]. Its
opposite,xo, is defined as

xo = a + b − x (1)

Definition 2: Let x be any real number between[a, b]. Its
quasi-opposite point,xqo, is defined as

xqo = rand(c, x̂o) (2)

wherec is the center of the interval[a, b] and can be calculated
as (a + b)/2 and rand(c, x̂o) is a random number uniformly
distributed betweenc and x̂o.

Since we reflectx to xo to accelerate the exploration
process, we propose apply the same logic and reflect the quasi-
opposite point,xqo, to obtain the quasi-reflected point,xqr.

Definition 3: Let x be any real number between[a, b]. Then
the quasi-reflected point,xqr, is defined as

xqr = rand(c, x) (3)

where rand(c, x) is a random number uniformly distributed
betweenc andx.

Fig. 2 illustrates a point̂x, its opposition,x̂o, its quasi-
opposition,x̂qo and its quasi-reflection,̂xqr.

a bcx̂ x̂o

x̂qr
︷ ︸︸ ︷

x̂qo
︷ ︸︸ ︷

Figure 2. Opposite points defined in domain[a, b]. c is the center of the
domain and̂x is an estimated solution, generated by an EA.x̂o is the opposite
of x̂, and x̂qo and x̂qr are the quasi-opposite and quasi-reflected points,
respectively.

B. Probabilistic Performance of Quasi-opposition

If x is the solution to the problem and̂x is our estimated
solution provided by the EA, then̂xo is the opposite of the
estimated solution and̂xqo and x̂qr are the quasi-estimates. In
this section, we compute the probability ofx̂qo being closer
than x̂o to the solution,x, and the expected value of this
probability under certain conditions.

Given the scenario in Fig. 2 wherea andb are the end points
of the solution domain andc is the center of this domain, there
are four possibilities for the solution,x: (A) x ∈ [a, x̂], (B)
x ∈ [x̂, c], (C) x ∈ [c, x̂o] or (D) x ∈ [x̂o, b]. Let’s examine
each case separately.

Case (A):x ∈ [a, x̂] as illustrated in Fig. 3.
From Fig. 3, we note that̂xqo is always closer than̂xo to

solution, x. Hence, whenx ∈ [a, x̂], the probability that the
quasi-opposition point is closer than the opposite point tothe
solution is

SMC 2009

a bcx̂ x̂o

x̂qo
︷ ︸︸ ︷

x
︷ ︸︸ ︷

Figure 3. Solution domain withx ∈ [a, x̂]

Pr[|x̂qo − x| < |x̂o − x|] = 1 for x ∈ [a, x̂] (4)

Case (B):x ∈ [x̂, c] as illustrated in Fig. 4.

a bcx̂ x̂o

x̂qo
︷ ︸︸ ︷

x
︷ ︸︸ ︷

Figure 4. Solution domain withx ∈ [x̂, c]

x is still always closer tôxqo than x̂o. Hence, whenx ∈
[x̂, c],

Pr[|x̂qo − x| < |x̂o − x|] = 1 for x ∈ [x̂, c] (5)

Case (C):x ∈ [c, x̂o] as illustrated in Fig. 5.

a bcx̂ x̂o

x, x̂qo
︷ ︸︸ ︷

Figure 5. Solution domain,x ∈ [c, x̂o]

From Fig. 5 we see that

Pr[|x̂qo − x| < |x̂o − x|] for x ∈ [c, x̂o]

= Pr[|x̂qo − x| < x̂o − x | x̂qo − x < 0] Pr[x̂qo − x < 0]

+ Pr[|x̂qo − x| < x̂o − x | x̂qo − x > 0] Pr[x̂qo − x > 0]

= Pr[x̂qo > 2x − x̂o | x̂qo < x] Pr[x̂qo < x]

+ Pr[x̂qo < x̂o | x̂qo > x] Pr[x̂qo > x] (6)

where we have used the total probability theorem [11]. If we
assume thatx andx̂qo have uniform distribution in[c, x̂o], then
Pr[x̂qo < x] = Pr[x̂qo > x] = 1

2
. We can solve the first of the

two expressions on the right side of Equation (6) as

Pr[x̂qo > 2x − x̂o | x̂qo < x] Pr[x̂qo < x]

=
Pr[x̂qo > 2x − x̂o, x̂qo < x]

Pr[x̂qo < x]

=
Pr[2x − x̂o < x̂qo < x]

Pr[x̂qo < x]

= 2

ˆ x̂o

c

ˆ x

2x−x̂o

f(x, x̂qo) dx̂qodx (7)

where f(x, x̂qo) is the joint probability distribution function of
x and x̂qo . This expression can be simplified as

2

ˆ x̂o

c

ˆ x

2x−x̂o

(
1

x̂o − c

)2

dx̂qodx =
1

4
(8)

SincePr[x̂qo < x̂o | x̂qo > x] = 1 when x ∈ [c, x̂o], we can
solve Equation (6) as

Pr[|x̂qo − x| < |x̂o − x|] =
1

4
+ (1)

(
1

2

)

=
3

4
for x ∈ [c, x̂o]

(9)
Case (D):x ∈ [x̂o, b] as illustrated in Fig. 6.

a bcx̂ x̂o

x̂qo
︷ ︸︸ ︷

x
︷ ︸︸ ︷

Figure 6. Solution domain,x ∈ [x̂o, b]

From Fig. 6, we see that̂xo is always closer than̂xqo to x.
Hence,

Pr[|x̂qo − x| < |x̂o − x|] = 0 for x ∈ [x̂o, b] (10)

Equations (4), (5), (9), and (10) can be combined to calculate
the probability of the quasi-opposition point being closerthan
the opposite point to the solution in the domain[a, b]:

Pr[|x̂qo − x| < |x̂o − x|]

=
1(x̂ − a) + 1(c − x̂) +

3

4
(x̂o − c) + 0(b − x̂o)

b − a

=

1

8
(a + b) − a +

3

4
x̂o

b − a
(11)

Assuming that the domain is symmetric, thatb = −a, and that
x̂o has a uniform distribution, we can calculate the expected
probability as

E(Pr[|x̂qo − x| < |x̂o − x|]) =
1

b

ˆ b

0

b +
3

4
x̂o

2b
dx̂o =

11

16
(12)

C. Comparing Quasi-opposition with Quasi-reflection

Equation (12) shows that the expected probability of
x̂qo being closer than̂xo to the solution is11

16
for a symmetric

domain. The performance of other types of opposite points
is investigated by calculating their corresponding expected
probabilities. Table I lists the findings of this analysis.

Row 6 in Table I illustrates that the quasi-opposite and
quasi-reflected estimates have the same probability of being
closer to the solution. However, when comparing to the original
estimated solution,̂x, the quasi-reflected estimate (shown in
Row 3, with an expected probability of11

16
) has a higher chance

of being closer to the solution than the quasi-opposite one
(shown in Row 2, with an expected probability of9

16
).

SMC 2009

Table I
PROBABILISTIC COMPARISON OF VARIOUS OPPOSITION METHODS

Row Methods Probability

1 E(Pr[|x̂o − x| < |x̂ − x|]) 1/2
2 E(Pr[|x̂qo − x| < |x̂ − x|]) 9/16
3 E(Pr[|x̂qr − x| < |x̂ − x|]) 11/16
4 E(Pr[|x̂qo − x| < |x̂o − x|]) 11/16
5 E(Pr[|x̂qr − x| < |x̂o − x|]) 9/16
6 E(Pr[|x̂qo − x| < |x̂qr − x|]) 1/2

Note that Row 4 in Table I lists the expected probability for
quasi-opposite population to be11

16
when compared against the

opposite population, but in Row 2, the probability drops to9

16

when it is compared against the original population,x̂. Thus,
we can deduce that when usingx̂qo , the quasi-opposite popula-
tion should be compared against the opposite population forthe
highest probability of success. However, comparing the quasi-
opposite population to the opposite population will come with
a cost of extra fitness evaluation of the opposite population.
Therefore, the most cost effective opposition method with the
highest probability of being closer to the solution is to create
a quasi-reflected population and choose the fittest individuals
among the original and reflected populations, as illustrated in
Row 3 of Table I.

D. Effects of Dimension on Opposition-Based Learning

Previous sections demonstrated the advantages of opposite
points on one-dimensional problems using expected proba-
bilities. In Fig. 7, we present the expected probabilities of
success as the problem dimension increases. Figure legends
have been abbreviated for clarification purposes. Entry of
E(Pr [x̂o, x̂]) is shorthand for E(Pr [|x̂o − x| < |x̂ − x|]) or
the expected probability of̂xo being closer to the solution than
x̂ . These results are obtained using a MATLABR© simulation.
According to these findings, for a 20-dimensional problem,
such as the ones presented in Section V, the quasi-reflected
estimate is 91 percent more likely to be closer to the solution
than the initial estimate. Fig. 7 also demonstrates that the
effectiveness of quasi populations increases with the problem’s
dimension.

IV. OPPOSITIONALBIOGEOGRAPHY-BASED

OPTIMIZATION ALGORITHM

Oppositional BBO (OBBO, also referred as OBBO) utilizes
opposition-based learning as well as other enhancements to
accelerate BBO. Table II outlines the structure of OBBO code.
Like many other EAs, OBBO benefits from elitism; on the
other hand, note the absence of mutation in this research.
OB BO starts by creating a random population and replacing
duplicates with randomly-generated individuals (Steps 1 and
2). The cost of each individual is calculated and an opposite
population is created (Steps 3 and 4, given in more detail
in Table III). The elite population is stored separately before
performing partial immigration-based BBO (Steps 6 and 7).
Once again, any duplicates that exist are replaced and the cost
of the population is calculated (Steps 8 and 9). Next, the quasi-
reflected population is created as discussed in Section IV-A

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

E
xp

ec
te

d
P

ro
ba

bi
lit

y

Dimension

E (Pr [x̂qr , x̂]) = E (Pr [x̂qo , x̂o])

E (Pr [x̂qo , x̂]) = E (Pr [x̂qr , x̂o])

E (Pr [x̂o , x̂]) = E (Pr [x̂qr , x̂qo])

Figure 7. Effects of dimension on expected probabilities of various opposition
methods. E(Pr [x̂qr, x̂]) is the expected value of the probability thatx̂qr is
closer to the solution than̂x. Other legends can be read similarly.

(Step 10) and the least fit are replaced with the elite of the
previous generation (Step 11). Later, the population is searched
for duplicates and sorted based on fitness values (Steps 12 and
13). Finally, unless the termination criteria is met, the next
generation begins (Step 14).

Table II
OBBO ALGORITHM

1) Initialize Population
2) Remove / Replace Duplicates
3) Fitness Evaluation
4) Initialize Opposite Population
5) Start the BBO Generation Loop
6) Store Elite Individuals
7) BBO Migrations
8) Remove / Replace Duplicates
9) Fitness Evaluation

10) Opposite Population Jumping
11) Restore Elite Individuals
12) Remove / Replace Duplicates
13) Sort Population
14) Go to Step 5

A. Implementation of Opposite Population Jumping

Based on the benefits of quasi-reflection presented in Sec-
tion III-C, we choose to implement quasi-reflected opposition.
The OBL algorithm, shown in Table III, is called afterJr

generations, where the jumping rate,Jr ∈ [0, 1], is a control
parameter set by the user to jump, or skip, opposite popu-
lation creation at certain generations to save computational
time. OB BO adds dynamic domain scaling to expedite the
optimization process. Dynamic domain scaling means that the
opposite population is created within the current generation’s
domain, instead of the initial domain defined by the user or the
domain of a single individual. As the generations progress and
the estimated solution converges, the dynamic scaling allows
the reflection domain to shrink and create opposite population
within a smaller range.

SMC 2009

Moreover, we include a reflection weight,κ, which deter-
mines the amount of reflection based on the solution fitness.
κ forces the least fit individuals to be compared against their
furthest possible reflection, whereas the fitter solutions will
be reflected to a nearby point. After generating the quasi-
reflected population, the function in Table III compares the
current population and its quasi-reflection to select the fittest
among them. Because the quasi-reflected population’s fitness
has to be evaluated, OBBO has to converge faster (with respect
to generation count) than original BBO in order to maintain
the same CPU load. A benchmark method based on number
of cost function calls is introduced in Section V-B to take this
into consideration.

Table III
QUASI-REFLECTEDOPPOSITEPOPULATION JUMPING PSEUDOCODE,

WHERENp IS THE POPULATION SIZE, D IS THE PROBLEM DIMENSION,
THE P IS THE CURRENT POPULATION, OP IS THE THE OPPOSITE

POPULATION, AND THE SUBSCRIPTSind AND var ADDRESS THEvar-TH

SOLUTION FEATURE IN THEind-TH INDIVIDUAL .

1) Evaluate function, if selected byJr :
if (rand > Jr) {quit}

2) Find the absolute min, max and median for the whole population
3) Create reflection weight,κ ∈ [0, 1], which determines the reflection
amount based on individual’s fitness
4) CreateOP based on the dynamic domain and reflection weight:

for ind = 1:Np

for var = 1:D
//Create a quasi-reflected number between
//the current variable and the median
if Pind,var < Median

OPind,var = Pind,var + (Median− Pind,var)κind

else
OPind,var = Median+ (Pind,var − Median)κind

5) Calculate the fitness of Opposite Population
6) P = the fittestNp individuals inP andOP

V. EMPIRICAL ANALYSIS

A. Benchmark Functions

Sixteen benchmark functions are implemented to compare
the performance of OBBO and BBO. Information about these
benchmark functions is shown in Table IV. More information
on these functions can be found in [1], [5], [12], [13]. The
benchmark functions are selected to provide a variety of
challenges to OBBO as each function meets different criteria:
mulitmodality, nonseparablity or irregularity. All thesefunc-
tions are general enough to be implemented in any number of
dimensions.

Note that the Penalty 1 and Penalty 2 functions, also called
Generalized Penalized Functions [12], have typographicaler-
rors in most of the literature [14], [15], [16], [17], including
some heavily-referenced articles [12], [13]. Readers should
refer to Equations 25 and 26 in the original publication [18]
for the correct equations.

B. Simulation Settings

Performance analysis presented in this paper is based
on the number of cost function evaluations,Fc, performed

Table IV
BENCHMARK FUNCTIONS WHEREn IS THE PROBLEM DIMENSION

Function Domain argmin min f(x)

Ackley (−32, 32)n 0n 0n

Alpine (−10, 10)n 0n 0n

Fletcher/Powell (−π, π)n rand(−π, π)n 0n

Griewank (−600, 600)n 0n 0n

Penalty1 (−50, 50)n 1n 0n

Penalty2 (−50, 50)n 1n 0n

Quartic (−1.28, 1.28)n 0n 0n

Rastrigin (−5.12, 5.12)n 0n 0n

Rosenbrock (−30, 30)n 1n 0n

Schwefel 1.2 (−100, 100)n 0n 0n

Schwefel 2.21 (−100, 100)n 0n 0n

Schwefel 2.22 (−10, 10)n 0n 0n

Schwefel 2.26 (−500, 500)n 420.9687n (−418.9829n)n

Sphere (−100, 100)n 0n 0n

Step (−100, 100)n 0n 0n

Zakharov (−5, 10)n 0n 0n

before reaching the desired solution range. This comparison
method is popular in the literature [19] since, generally, the
computation of fitness/cost function consumes most of the
CPU’s resources. The accepted solution range is calculated
by a method proposed in [20]:

|f − f̂ | < ǫ1|f | + ǫ2 (13)

wheref is the global minimum,f̂ is the minimum obtained
by the EA, andǫ1 and ǫ2 are small positive numbers, taken
as10−4 in this paper. All the benchmarks are computed in 20
dimensions with a population size of 50 over 50 Monte Carlo
simulations. In order to avoid infinite run times, we introduced
a function evaluation limit of 5,000,000. For OBBO, jumping
rate constant,Jr, is set to 0.3 [5] and finally, for both
algorithms, top two solutions in each generation are preserved
under elitism.

C. Empirical Results

Table V presents the effects of quasi-reflection andκ on
BBO. The table lists the average number of function calls for
successful runs, Equation (13), and the success rate, SR, which
is defined as the ratio of number of successful runs to the
number of trials.

Special attention should be paid to the penalized (Penalty 1
and 2) and noisy (Quartic) problems as these challenges occur
frequently in real-world applications. OBBO provided signifi-
cant performance boost on these problems. Several conclusions
can be drawn from Table V. Problems such as Rosenbrock
and Schwefel 2.21 that could not be solved with BBO have
a 100% success rate with OBBO . For all of the benchmarks
except Fletcher, the success rate increased when possible and
the number of function calls was reduced. The use of OBL
increased the average SR of BBO from 70% to 94% and
decreased average number of function calls from 370,801 to
5,793 which is a 98% improvement. Based on these analyses,
we can note that OBBO significantly improves BBO’s perfor-
mance while reducing the number of cost function evaluations.

SMC 2009

Table V
MEAN OF FUNCTION CALLS MADE FOR SUCCESSFUL RUNS, AND THE

SUCCESS RATE, SR

Benchmark BBO OBBO

Functions Mean Fc SR Mean Fc SR

Ackley 23,150 1 2,394 1
Alpine 14,293 1 9,430 1
Fletcher - 0 - 0

Griewank 372,488 0.24 2,102 1
Penalty1 39,092 1 1,513 1
Penalty2 37,082 1 1,678 1
Quartic 168,375 1 27,050 1

Rastrigin 4,997 1 2,111 1
Rosenbrock - 0 8,223 1
Schwefel 1.2 2,796,393 0.5 4,893 1
Schwefel 2.21 - 0 8,110 1
Schwefel 2.22 13,841 1 2,977 1
Schwefel 2.26 124,248 1 8,092 1

Sphere 4,902 1 1,240 1
Step 157,187 1 997 1

Zakharov 1,064,367 0.48 6,086 1

Mean 370,801 0.70 5,793 0.94

VI. CONCLUSION

In this paper, we presented a new flavor of BBO, entitled
oppositional BBO or OBBO . The proposed algorithm accel-
erated BBO’s performance by incorporating opposition-based
learning, dynamic domain scaling and weighted reflections.

Also, a new variation of opposition-based learning named
quasi-reflection is introduced. We proved the contribution
of quasi-reflection and quasi-opposition by calculating the
expected probability of the quasi-opposite population being
closer to the solution then the original population for single-
dimensional case. We extended this analysis to higher dimen-
sions through computer simulations and determined that the
performance of quasi-reflection and quasi-opposition improves
with the problem’s dimension. Later, we explained that us-
ing quasi-reflection along with BBO’s estimate has a higher
probability of yielding an answer closer to the solution than
any other opposition-based method, while requiring the least
computational effort. Thus, quasi-reflection was the preferred
oppositional algorithm to create OBBO.

OB BO significantly outperforms BBO. A collection of 16
well-known 20-dimensional problems were used for this anal-
ysis and the average success rate and the average number
of cost function evaluations for successful runs of BBO and
OB BO were compared. Overall, OBBO was able to increase
the success rate from 70% to 94% while reducing the mean
cost function evaluation by 98%. Thus, the results presented
strongly endorse the proposed enhancements.

The presented work can be expanded by finding analytical
expressions for the higher dimensional probabilities of quasi-
reflected and quasi-opposite populations. A statistical hypoth-
esis test, such as Chi-square test, can be applied to analyze
the significance of dynamic domain scaling (the domain of
a variable is based on the domain of the whole population)
versus the domain as defined in other opposition-based learn-
ing algorithms (the domain of a variable is based on the

domain of the individual). Finally, even though quasi-reflection
improves BBO’s performance considerably, neither algorithm
could solve the Fletcher problem. Further investigation should
be made to explore the reasons behind this.

REFERENCES

[1] D. Simon, “Biogeography-based optimization,”IEEE Transactions on
Evolutionary Computation, vol. 12, pp. 702–713, December 2008.

[2] D. Simon, M. Ergezer, and D. Du, “Markov analysis
of biogeography-based optimization.” Available online at
http://academic.csuohio.edu/simond/bbo/markov/.

[3] D. Simon, M. Ergezer, and D. Du, “Population distributions in
biogeography-based optimization with elitism.” Available online at
http://academic.csuohio.edu/simond/bbo/markov/.

[4] D. Simon, “A probabilistic analysis of a simplified
biogeography-based optimization algorithm.” Available online at
http://academic.csuohio.edu/simond/bbo/simplified/.

[5] S. Rahnamayan, H. Tizhoosh, and M. Salama, “Opposition-based dif-
ferential evolution,”IEEE Transactions on Evolutionary Computation,
vol. 12, no. 1, pp. 64–79, 2008.

[6] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Quasi-
oppositional differential evolution,” inProc. IEEE Congress on Evo-
lutionary Computation CEC 2007, pp. 2229–2236, 2007.

[7] H. Tizhoosh, “Opposition-based learning: A new scheme for machine
intelligence,” in Proceedings of International Conference on Compu-
tational Intelligence for Modelling Control and Automation, vol. 1,
pp. 695–701, 2005.

[8] M. Ventresca and H. Tizhoosh, “Improving the convergenceof back-
propagation by opposite transfer functions,” inIEEE International Joint
Conference on Neural Networks, pp. 9527–9534, 2006.

[9] H. Wang, Y. Liu, S. Zeng, H. Li, and C. Li, “Opposition-based particle
swarm algorithm with cauchy mutation,” inIEEE Congress on Evolu-
tionary Computation, Singapore, pp. 4750–4756, 2007.

[10] A. R. Malisia, “Investigating the application of opposition-based ideas
to ant algorithms,” Master’s thesis, University of Waterloo, 2007.

[11] A. Papoulis, S. Pillai, P. A, and P. SU,Probability, random variables,
and stochastic processes. McGraw-Hill New York, 1965.

[12] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Transactions on Evolutionary Computation, vol. 3, no. 2, pp. 82–
102, 1999.

[13] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” inIEEE Congress on Evolutionary
Computation, vol. 2, pp. 1980–1987, 2004.

[14] H. Zhang and J. Lu, “Adaptive evolutionary programming based on
reinforcement learning,”Information Sciences, vol. 178, no. 4, pp. 971
– 984, 2008.

[15] N. Noman and H. Iba, “Accelerating differential evolution using an
adaptive local search,”IEEE Transactions on Evolutionary Computation,
vol. 12, no. 1, pp. 107–125, 2008.

[16] S. He, Q. Wu, J. Wen, J. Saunders, and R. Paton, “A particle swarm
optimizer with passive congregation,”Biosystems, vol. 78, no. 1-3,
pp. 135 – 147, 2004.

[17] Z. Tu and Y. Lu, “A robust stochastic genetic algorithm (stga) for
global numerical optimization,”IEEE Transactions on Evolutionary
Computation, vol. 8, pp. 456–470, Oct. 2004.

[18] F. Aluffi-Pentini, V. Parisi, and F. Zirilli, “Global optimization and
stochastic differential equations,”Journal of Optimization Theory and
Applications, vol. 47, no. 1, pp. 1–16, 1985.

[19] K. Price, R. Storn, and J. Lampinen,Differential Evolution: A Practical
Approach to Global Optimization (Natural Computing Series). Springer-
Verlag New York, Inc. Secaucus, NJ, USA, 2005.

[20] A.-R. Hedar and M. Fukushima, “Minimizing multimodal functions by
simplex coding genetic algorithm,”Optimization Methods and Software,
vol. 18, pp. 265 – 282, June 2003.

SMC 2009

