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Abstract—We propose a novel variation to biogeography-
based optimization (BBO), which is an evolutionary algorithm
(EA) developed for global optimization. The new algorithm
employs opposition-based learning (OBL) alongside BBO’s mi-
gration rates to create oppositional BBO (GHBO). Additionally,

a new opposition method named quasi-reflection is introduced.
Quasi-reflection is based on opposite numbers theory and we
mathematically prove that it has the highest expected probability
of being closer to the problem solution among all OBL methods.
The oppositional algorithm is further revised by the addition
of dynamic domain scaling and weighted reflection. Simulations
have been performed to validate the performance of quasi-
opposition as well as a mathematical analysis for a single-
dimensional problem. Empirical results demonstrate that with
the assistance of quasi-reflection, O8O0 significantly outperforms
BBO in terms of success rate and the number of fithess function
evaluations required to find an optimal solution.

Index Terms—Biogeography-based optimization (BBO), evolu-
tionary algorithms, opposition-based learning, opposite numbers,
guasi-opposite numbers, quasi-reflected numbers, probability.

I. INTRODUCTION

However, there is still some room left for improving BBO
since many other techniques have been developed to enhance
other EAs. In this paper, we adapt one such algorithm,
opposition-based learning (OBL), to BBO in an attempt to
attain BBO's highest potential.

OBL is utilized by EAs to accelerate the convergence speed
by comparing the fitness of a solution estimate to its opposit
and keeping the fitter one in the population. Oppositioretas
differential evolution (ODE) [5] was the first implementati
of OBL to EAs. Later, [6] demonstrated that quasi-opposite
points have a better convergence rate than opposite p&ints.
Section Ill, we provide the analytical expressions illatitig
the benefits of selecting quasi-opposite points in a single-
dimensional case. Later, we introduce quasi-reflectedtpoin
and demonstrate that quasi-reflection yields the highedigpr
bility of success while requiring less fitness computatitiram
other OBL algorithms. Additionally, we present the effects
of increased dimensions on opposite points. We add quasi-
reflection to BBO to create oppositional BBO (@B). In
OBd0, the OBL algorithm is further modified by dynamic

Evolutionary Algorithms (EA) are created to solve implicit qomain scaling and weighting the reflection amount based on
and explicit functions and, unlike many numerical methods;ndividual’s fitness.
do not require the objective function to be differentiadle. The paper is organized as follows: Section Il provides a

fact, EAs do not require any information about the objectiveyjet jntroduction to BBO. Section Il defines the opposite
function. This characteristic makes them a desirable mhthopoints, derives the expected probabilities of quasi-opp@os

for solving complex problems. _ points’ distance to the solution for a single-dimensiorasec
Biogeography-based optimization (BBO) [1] is a new EA ang presents the effects of higher dimensions for all OBL

developed for global optimization. BBO is a generalizationyethods. Section IV describes the proposecdORlgorithm.

of biogeography to EA. It is modeled after the immigration gection Vv introduces the benchmark problems, the experi-

and emigration of species between islands in search of morgental settings and discusses the results obtained. inall

friendly habitats. The islands represent the solutionstaBd  gection VI states the conclusion and suggests future work.
are ranked by their island suitability index (ISI), whereighter

ISI signifies a superior fitness value. The islands are caagri .
of solution features named suitability index variablesV(SlI L ,
One of the distinguishing features of BBO is that when

equivalent to GA's genes. , . ) .
BBO is one of the newest evolutionary algorithms, but it.Upd"’.Itmg. the populgtlor), B.BO cons_lders t.he f"”e?s of the
has already proven itself a worthy competitor to its better-Imrnlgratlng and emigrating islands via the immigration and

known siblings. The Markov analysis in [2], [3] proves that emigration curves. Fig. 1 illustrates I|nea_r BBO Immigoat
BBO outperforms GA on simple unimodal, multimodal and and emigration curves. The worst solution has the highest
' immigration rate; hence, it has a very high chance of bomgwi

deceptive benchmark functions when used with low mutatior# i ¢ th luti helping it to i for th
rates. Reference [4] provides experimental studies caommpar eatures ro?] 0 Tir sbo utlonls,,f © r;]mg It to |rir1prqve or t'e
BBO’s performance to many other EAs on a wide set of Next generation. rhe Lest solution has a very low immignatio

rate, indicating that it is less likely to be altered by the

benchmarks. . o L

other solutions. The emigration rate works similarly. Ntttat
emigration in BBO does not mean that the emigrating island
loses a feature. For example, if a feature in island 1 migrate
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to island 2, then both islands 1 and 2 have this feature. Thbe closer to the solution than the opposite point. In thisicec
worst solution is assumed to have the worst features; thus, we prove how much quasi-opposition is better than oppasitio
has a very low emigration rate and a low chance of sharingrirst, let us define opposite and quasi-opposite numberaén o
its features. On the other hand, the solution that has the bedimensional space. These definitions can easily be extended
features also has the highest probability of sharing thesn. F higher dimensions.

this research, we implement partial immigration-based BBO Definition 1: Let = be any real number betweéa, b]. Its
as described in [4]. opposite,z,, is defined as

N ' ' ' ' To=a+b—z Q)
\.\k)\, immigration M, emigration -

< rate rate - Definition 2: Let = be any real number betweea, b]. Its
N ] quasi-opposite pointy,,, is defined as

N ] zq0 = randc, Z,) (2)

wherec is the center of the intervad, b] and can be calculated

bt ] as (a + b)/2 and rand{, &,) is a random number uniformly
N ] distributed betweer andz,,.

N Since we reflectx to z, to accelerate the exploration
~ ] process, we propose apply the same logic and reflect the-quasi

N opposite point;z,,, to obtain the quasi-reflected point,,.
. . e Definition 3: Let « be any real number betweén b]. Then
Worst Solution Best Solution the quasi-reflected poin,,., is defined as

Solutions sorted by fitness

Migration rate

Figure 1. Linear migration rates plotted against the sortgulfation. zqr = randc, x) 3)

where rand{, z) is a random number uniformly distributed
1. OPPOSITIONBASED LEARNING betweenc and .
Opposition-based learning (OBL) is proposed in [7]. OBL  Fig, 2 illustrates a point:, its opposition,z,, its quasi-
has first been utilized to improve learning and back Propopposition,z,, and its quasi-reflection;,, .
agation in neural networks [8], and since then it has been . .
applied to many evolutionary algorithms such as diffeadnti Lar Tqo
evolution [5], particle swarm optimization [9] and ant cajyo \
optimization [10]. a
The philosophy of OBL is that natural learning is time
consuming becaus.e it is modeled after a Very slow proges igure 2. Opposite points defined in domdin b]. c is the center of the
For example, GA is modeled after the evolution of SPECI€Iomain and: is an estimated solution, generated by an EAIs the opposite
and it takes many life cycles for a species to evolve. On thef z, and &4, and 4. are the quasi-opposite and quasi-reflected points,
other hand, human society progresses at a much faster rafspectively.
via “social revolutions” [7]. Hence, if such a model could be
simulated, the learning process could be improved. Rewnisit B propapilistic Performance of Quasi-opposition
are fast and changes are fundamental, whether in politics, If = is the solution to the problem andis our estimated
economics or any other context. OBL maps this theory to P

machine learning and proposes to use opposite numberacihsteSOIUtlon provided by the EA, then, is the opposite of the

of random ones to quickly evolve the population. estimated solution and,, andz,, are the quasi-estimates. In

The main principal of OBL is to utilize opposite numbers this section, we compute the probability 8, being closer

to approach the solution. The inventors of OBL claim that athan To .to the 5°'”“°'f"f”* anq_ the expected value of this
robability under certain conditions.

number’s opposite is probably closer than a random numbdt" > S .
to a solution. Thus, by comparing a number to its opposite, a Given th? scenario in F|g. 2 wheaeandb are the enq points
smaller search space is needed to converge to the righicsolut of the SOIUUO”. d.o'r.nam andis the C.eme_r of this doma}m, there
Later in this section, we prove that a quasi-opposite nuritber are fo}” possibilities ff)r the solutlom.A (A) E,[a’m]’ ('.3)
usually closer than a random number to the solution. We alsg < [#,¢], (C) @ € ¢, 3] or (D) z € [Zo,b]. Let's examine
prove that a quasi-opposite number is usually closer than a%ach case separateJy. . -
opposite number to the solution. Case (A.‘):x € [a,4] as |IIustrat'ed in Fig. 3.
) N o ) From Fig. 3, we note that,, is always closer that, to

A. Quasi-opposition and Opposition Points solution, z. Hence, whenr € [a, 2], the probability that the

In [6], Rahnamayan introduces quasi-opposition-basedjuasi-opposition point is closer than the opposite poirthto
learning and proves that a quasi-opposite point is moréyltke  solution is

[

Lo

1=
o
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X xqo
—_—~ —_—~
1 | | | |
I 1 T ] |
a T c To b
Figure 3. Solution domain with: € [a, Z]
Pr(|&qo — | < |Zo —z|] =1 fOr = € [a, 7] 4)
Case (B):x € [#,c] as illustrated in Fig. 4.
€T ‘%(IO
1 | | | |
I 1 1 A |
a T c T, b

Figure 4. Solution domain witk € [, c]

x is still always closer tot,, thanz,. Hence, wher: €
(2, c],

Pr(|#40 — | < |Zo —z|] =1 for z € [, ] (5)

Case (C)x € [¢, ] as illustrated in Fig. 5.

Z, Tqo
—_—~
| | | | |
I 1 T ) 1
a T c To b
Figure 5. Solution domaing € [c, o]
From Fig. 5 we see that
Pr{|2q0 — | < |&o — z|] fOr o € [c, &,
=Pr(|Zgo — 2| <To— x| Tgo —x < 0] Pr[igo — z < 0]

+Pr[|Tgo — x| < To —x | &40 — x> 0] Pr[Eyo — x > 0]
=Pr{lg > 22 — 3o | g0 < 2] Pr[Zgo < ]
+ Pr(tg, < o | g0 > 2] Pr[Zqo > 2] (6)

where we have used the total probability theorem [11]. If we E (Pr[|2,, — z| < |2, — 2|]) =
assume that andz,, have uniform distribution iric, £,], then
3. We can solve the first of the

Pr{Zqo < x] = Pr[q > 2] =
two expressions on the right side of Equation (6) as

Pr{dqo > 2z — o | Tgo < 2] Pr[Zq0 < 7]
_ Prlig, > 20— 2y, T4 < 7]
Pr(z4 < 7]
Pri2z — &, < Zgo < ]
Pr[z xqo < x]

= 2/ / (2, Zq0) 02 godz  (7)
26—,

where {z, Z,4,) is the joint probability distribution function of

x andZ4, . This expression can be simplified as

2 1
) Aotk = ©)

[
2 A
c 2r—2=, Lo —C

SincePr(iy < Iy | #40 > z] = 1 Whenz € [c, &,], we can
solve Equation (6) as

Pr{|ig0 — | < |#0 — 2] = % (1) <1> — 2 for @ € [c, 2]
9)

Case (D):x € [&,,b] as illustrated in Fig. 6.

Figure 6. Solution domaing € [Zo, b]

From Fig. 6, we see thait, is always closer that,, to x
Hence,

Pr{|&qo — x| < |Zo —z|] = 0 for = € [&,, b] (10)

Equations (4), (5), (9), and (10) can be combined to caleulat
the probability of the quasi-opposition point being cloten
the opposite point to the solution in the doméinb:

Prl|igo — 2| < |2, — ]
(z—a)+1(c—12)+ Z(a&o —¢)+0(b—1Ty)
b—a
1
—(a+0) —a+§i‘o
=8 i (1
b—a
Assuming that the domain is symmetric, that —a, and that

I, has a uniform distribution, we can calculate the expected
probability as

3.
l/bb+4$OdA _E
bJ, 26 T °T 16
12)

C. Comparing Quasi-opposition with Quasi-reflection

Equation (12) shows that the expected probability of
240 being closer thart, to the solution is;z for a symmetric
domain. The performance of other types of opposite points
is investigated by calculating their corresponding expect
probabilities. Table I lists the findings of this analysis.

Row 6 in Table I illustrates that the quasi-opposite and
quasi-reflected estimates have the same probability ofgbein
closer to the solution. However, when comparing to the pabi
estimated solutiong, the quasi-reflected estimate (shown in
Row 3, with an expected probability é%) has a higher chance
of being closer to the solution than the quasi-opposite one
(shown in Row 2, with an expected probability @)f).
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Table |

PROBABILISTIC COMPARISON OF VARIOUS OPPOSITION METHODS !
Row Methods Probability 0.9r
1 E(Pr[[Z0 — 2] < & — 2]]) 175
2 E(Pr[|2qo — z| < |2 — =|]) 9/16
3 E(Prf|2qr — z| < |& — =|]) 11/16 208y
4 E(Pr[|2qo — 2| < |20 — z|]) 11/16 E - —— B (Pr [y, 7)) = B (Pr [igo, o))
5 E(Pr[|#qr — 2| < |T0 — []) 9/16 e o’ o L
6 E(Pr[\a%qqo — x| < |Zgr — ) 1/2 % o P 7O BPrlae 2 S E(Prlan 2o 1
g - R E (Pr &, £]) = B (Pr [£g, £g0])
. . . & 06fd
Note that Row 4 in Table | lists the expected probability for o
quasi-opposite population to % when compared against the
opposite population, but in Row 2, the probability dropso osr
when it is compared against the original populatidon,Thus,
we can deduce that when usifg,, the quasi-opposite popula- 04, p o p = 00
tion should be compared against the opposite populatiotinéor Dimension

highest probability of success. However, comparing thesgua

; ; ; ; ; i Figure 7. Effects of dimension on expected probabilitiesasfous opposition
opposite populat!on to the 0pp9$|te population Wlll CommWI methods. EPr [24,, Z]) is the expected value of the probability thag,. is
a cost of extra fitness evaluation of the opposite populationgjoser to the solution tha. Other legends can be read similarly.
Therefore, the most cost effective opposition method whith t
highest probability of being closer to the solution is toatee ) . .
a quasi-reflected population and choose the fittest indaidu (SteP 10) and t?e Iegft ml lareLr(:plat(;ed W'thl t?e e_Iltel Ofl the
among the original and reflected populations, as illustrate previous genera lon (Step 11). La er, the popuiation |
Row 3 of Table I. for duplicates and sorted based on fitness values (Stepsdl2 an

13). Finally, unless the termination criteria is met, thextne
D. Effects of Dimension on Opposition-Based Learning generation begins (Step 14).
Previous sections demonstrated the advantages of opposite Table I
points on one-dimensional problems using expected proba- OBBO ALGORITHM
bilities. In Fig. 7, we present the expected probabilitids o
success as the problem dimension increases. Figure legendsl) Initialize Population
have been abbreviated for clarification purposes. Entry of 2) Remove/ Replace Duplicates

N ATy . N 3) Fitness Evaluation
E(Pr (2o, #]) is shorthand for .EPT [[£o — 2| < |2 — x\]) or 4) Initialize Opposite Population
the expected probability af, being closer to the solution than  5) Start the BBO Generation Loop

#. These results are obtained using a MATL®Bsimulation. % gg:(r)e'&i'“fat'i’;?]i‘s’id“a's
According to these findings, for a 20-dimensional problem, g Removeg, Replace Duplicates
such as the ones presented in Section V, the quasi-reflected9) Fitness Evaluation
estimate is 91 percent more likely to be closer to the satutio 10) ~ Opposite Population Jumping
h he initial . Fig. 7 al d h h 11 Restore Elite Individuals
than the initial estimate. Fig. 7 also demonstrates that thei)  Rremove / Replace Duplicates
effectiveness of quasi populations increases with thelpnob 13)  Sort Population

IV. OPPOSITIONALBIOGEOGRAPHY¥BASED

OPTIMIZATION ALGORITHM A. Implementation of Opposite Population Jumping
Oppositional BBO (OBBO, also referred as @B) utilizes Based on the benefits of quasi-reflection presented in Sec-
opposition-based learning as well as other enhancements tion I1I-C, we choose to implement quasi-reflected oppoaiti
accelerate BBO. Table Il outlines the structure of@Bcode. The OBL algorithm, shown in Table Ill, is called aftef,.

Like many other EAs, OBO benefits from elitism; on the generations, where the jumping ratg, € [0, 1], is a control
other hand, note the absence of mutation in this researclparameter set by the user to jump, or skip, opposite popu-
OBA8O starts by creating a random population and replacindation creation at certain generations to save computation
duplicates with randomly-generated individuals (Stepsnd a time. OBJdO adds dynamic domain scaling to expedite the
2). The cost of each individual is calculated and an oppositeptimization process. Dynamic domain scaling means thet th
population is created (Steps 3 and 4, given in more detaibpposite population is created within the current geneméti

in Table Ill). The elite population is stored separatelydoef domain, instead of the initial domain defined by the user er th
performing partial immigration-based BBO (Steps 6 and 7)domain of a single individual. As the generations progress a
Once again, any duplicates that exist are replaced and #ie cdhe estimated solution converges, the dynamic scalingvallo
of the population is calculated (Steps 8 and 9). Next, theigua the reflection domain to shrink and create opposite pomuiati
reflected population is created as discussed in Section IV-Avithin a smaller range.
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Table IV
BENCHMARK FUNCTIONS WHERE™N IS THE PROBLEM DIMENSION

Moreover, we include a reflection weight, which deter-
mines the amount of reflection based on the solution fitness.
k forces the least fit individuals to be compared against thei

. . . . Function Domain argmin min f(x
furthest possible reflection, whereas the fitter solutionlé w g , )
be reflected to a nearby point. After generating the quasi- ﬁfr';i'r?é’ E:il)’g’ :1%3” 8n gn
reflected population, the function in Table 1l compares the Fetcher/Powell (,w: " rand(r, 7)" on
current population and its quasi-reflection to select thedfit Griewank (=600, 600)™ (U o
among them. Because the quasi-reflected population’s gitnes g:ﬂg:g% §i§8’ gggn i o
has to be evaluated, G has to converge faster (with respect Quartic (—1.28,1.28)" on on
to generation count) than original BBO in order to maintain Rastrigin (-5.12,5.12)" o" o"

n n n

the same CPU load. A benchmark method based on number SFf:%SWegfzrlolckz ((__138’ ?82))" én 8n

of cost function calls is introduced in Section V-B to takésth  schwefel 2.21 (71003 100)" on on

into consideration. Schwefel 2.22  (—10,10)" o on
Schwefel 2.26  (—500, 500)™ 420.9687  (—418.9829n)"

Table 111 Sphere (—100, 100)™ o o

QUASI-REFLECTEDOPPOSITEPOPULATION JUMPING PSEUDOCODE Step (=100, 100)™ on on

WHERE Ny, IS THE POPULATION SIZE D IS THE PROBLEM DIMENSION Zakharov (—5,10)™ o” o"

THE P IS THE CURRENT POPULATION OP IS THE THE OPPOSITE
POPULATION, AND THE SUBSCRIPTSind AND var ADDRESS THEvar-TH
SOLUTION FEATURE IN THE#nd-TH INDIVIDUAL .

1) Evaluate function, if selected h,:
if (rand > J,) {quit}
2) Find the absolute min, max and median for the whole population
3) Create reflection weight € [0, 1], which determines the reflection
amount based on individual’s fitness
4) CreateOP based on the dynamic domain and reflection weight:
for ind = 1: N,
for var = 1: D
/1 Create a quasi-reflected nunber between
//the current variable and the nedi an
if P’Lnd,var < Medi an
OPz'nd,var = Pind,var + (Nbdl an — Pind,var)’find
el se
OPind,'UaT = Medi an + (Pind,var — Medi an)‘%ind
5) Calculate the fitness of Opposite Population
6) P = the fittestN,, individuals in P andOP

V. EMPIRICAL ANALYSIS
A. Benchmark Functions

before reaching the desired solution range. This compariso
method is popular in the literature [19] since, generalhg t
computation of fitness/cost function consumes most of the
CPU'’s resources. The accepted solution range is calculated
by a method proposed in [20]:

If = fl < elfl +e (13)

where f is the global minimum,f is the minimum obtained
by the EA, ande; ande; are small positive numbers, taken
as10~* in this paper. All the benchmarks are computed in 20
dimensions with a population size of 50 over 50 Monte Carlo
simulations. In order to avoid infinite run times, we introed

a function evaluation limit of 5,000,000. For @B, jumping
rate constant,J., is set to 0.3 [5] and finally, for both
algorithms, top two solutions in each generation are pveser
under elitism.

C. Empirical Results

Sixteen benchmark functions are implemented to compare Table V presents the effects of quasi-reflection andn
the performance of O80 and BBO. Information about these BBO. The table lists the average number of function calls for
benchmark functions is shown in Table IV. More information successful runs, Equation (13), and the success rate, S& wh
on these functions can be found in [1], [5], [12], [13]. The is defined as the ratio of number of successful runs to the
benchmark functions are selected to provide a variety ofumber of trials.

challenges to OBO as each function meets different criteria:
mulitmodality, nonseparablity or irregularity. All thedanc-

Special attention should be paid to the penalized (Penalty 1
and 2) and noisy (Quartic) problems as these challenges occu

tions are general enough to be implemented in any number dfequently in real-world applications. GED provided signifi-

dimensions.

cant performance boost on these problems. Several congkisi

Note that the Penalty 1 and Penalty 2 functions, also calledan be drawn from Table V. Problems such as Rosenbrock

Generalized Penalized Functions [12], have typograptdcal
rors in most of the literature [14], [15], [16], [17], includy

and Schwefel 2.21 that could not be solved with BBO have
a 100% success rate with @B . For all of the benchmarks

some heavily-referenced articles [12], [13]. Readers khou except Fletcher, the success rate increased when posaitble a
refer to Equations 25 and 26 in the original publication [18]the number of function calls was reduced. The use of OBL

for the correct equations.

B. Simulation Settings

increased the average SR of BBO from 70% to 94% and
decreased average number of function calls from 370,801 to
5,793 which is a 98% improvement. Based on these analyses,

Performance analysis presented in this paper is basede can note that O8O significantly improves BBO’s perfor-

on the number of cost function evaluations,, performed

mance while reducing the number of cost function evaluation

SMC 2009



Table V
MEAN OF FUNCTION CALLS MADE FOR SUCCESSFUL RUNSAND THE
SUCCESS RATE SR

domain of the individual). Finally, even though quasi-retilen
improves BBO’s performance considerably, neither alganit
could solve the Fletcher problem. Further investigatiooudth

be made to explore the reasons behind this.

Benchmark BBO OHO
Functions Mean Fc SR Mean Fc SR

Ackley 23,150 1 2,394 1 REFERENCES
Alpine 14,293 1 9,430 1
Fletcher -0 -0 [1] D. Simon, “Biogeography-based optimizationEEE Transactions on
Griewank 372,488 0.24 2,102 1 Evolutionary Computationvol. 12, pp. 702-713, December 2008.
Penaltyl 39,092 1 1513 1 [2] D. Simon, M. Ergezer, and D. Du, “Markov analysis
Penalty2 37,082 1 1,678 1 of  biogeography-based optimization.” Available online at
Quiartic 168,375 1 27,050 1 http://academic.csuohio.edu/simond/bbo/markov/.
Rastrigin 4997 1 2,111 1 [3] D. Simon, M. Ergezer, and D. Du, “Population distributiorin
Rosenbrock -0 8,223 1 biogeography-based optimization with elitism.” Availablenlioe at
Schwefel 1.2 2,796,393 0.5 4893 1 http://academic.csuohio.edu/simond/bbo/markov/.
Schwefel 2.21 -0 8,110 1 [4] D. Simon, “A probabilistc analysis of a simplified
Schwefel 2.22 13,841 1 2977 1 biogeography-based optimization algorithm.” Available ioal at
Schwefel 2.26 124,248 1 8,092 1 http://academic.csuohio.edu/simond/bbo/simplified/.

Sphere 4902 1 1,240 1 [5] S. Rahnamayan, H. Tizhoosh, and M. Salama, “Oppositiaedaif-

Step 157,187 1 997 1 ferential evolution,”IEEE Transactions on Evolutionary Computation
Zakharov 1,064,367 0.48 6,086 1 vol. 12, no. 1, pp. 6479, 2008.
[6] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Quasi-
Mean 370,801  0.70 5793 0.94 oppositional differential evolution,” irProc. IEEE Congress on Evo-
lutionary Computation CEC 20Qpp. 2229-2236, 2007.
[7] H. Tizhoosh, “Opposition-based learning: A new scheme rfachine
intelligence,” in Proceedings of International Conference on Compu-
VI. ConcLusion tational Intelligence for Modelling Control and Automatiovol. 1,
In this paper, we presented a new flavor of BBO, entitled pp. 695-701, 2005. . _
oppositional BBO or OBO . The proposed algorithm accel- 8] M- Ventresca and H. Tizhoosh, “Improving the convergenGenack-
, . ] . propagation by opposite transfer functions,"|EEE International Joint
erated BBO's performance by incorporating oppositionellas Conference on Neural Networksp. 9527-9534, 2006.
learning, dynamic domain scaling and weighted reflections. [9] H. Wang, Y. Liu, S. Zeng, H. Li, and C. Li, "Opposition-bed particle

Also, a new variation of opposition-based learning named
quasi-reflection is introduced. We proved the contribution[;o
of quasi-reflection and quasi-opposition by calculating th
expected probability of the quasi-opposite populationngei
closer to the solution then the original population for &g [12]
dimensional case. We extended this analysis to higher dimen
sions through computer simulations and determined that thﬁ3]
performance of quasi-reflection and quasi-opposition owes
with the problem’s dimension. Later, we explained that us-
ing quasi-reflection along with BBO’s estimate has a higher[14]
probability of yielding an answer closer to the solutionrtha
any other opposition-based method, while requiring thstlea
computational effort. Thus, quasi-reflection was the prefe
oppositional algorithm to create G®.

OB8dO0 significantly outperforms BBO. A collection of 16 [16]
well-known 20-dimensional problems were used for this anal
ysis and the average success rate and the average numben
of cost function evaluations for successful runs of BBO and
OB80 were compared. Overall, G was able to increase (18]
the success rate from 70% to 94% while reducing the mean
cost function evaluation by 98%. Thus, the results presente
strongly endorse the proposed enhancements. [

The presented work can be expanded by finding analytical
expressions for the higher dimensional probabilities adsiju  [20]
reflected and quasi-opposite populations. A statisticplbotty
esis test, such as Chi-square test, can be applied to analyze
the significance of dynamic domain scaling (the domain of
a variable is based on the domain of the whole population)
versus the domain as defined in other opposition-based-learn
ing algorithms (the domain of a variable is based on the

swarm algorithm with cauchy mutation,” ilEEE Congress on Evolu-
tionary Computation, Singapor@p. 4750-4756, 2007.

A. R. Malisia, “Investigating the application of opptisn-based ideas
to ant algorithms,” Master’s thesis, University of Waterl@®07.

] A. Papoulis, S. Pillai, P. A, and P. SProbability, random variables,

and stochastic processeMcGraw-Hill New York, 1965.

X. Yao, Y. Liu, and G. Lin, “Evolutionary programming madaster,”
IEEE Transactions on Evolutionary Computatioml. 3, no. 2, pp. 82—
102, 1999.

J. Vesterstrom and R. Thomsen, “A comparative study diedihtial
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