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Abstract Biogeography-based optimization (BBO) algo-
rithm is a new kind of optimization technique based on
biogeography concept. This population-based algorithm uses
the idea of the migration strategy of animals or other species
for solving optimization problems. In this paper, the BBO
algorithm is developed for flexible job shop scheduling
problem (FJSP). It means that migration operators of BBO
are developed for searching a solution area of FJSP and
finding the optimum or near-optimum solution to this
problem. In fact, the main aim of this paper was to provide a
new way for BBO to solve scheduling problems. To assess the
performance of BBO, it is also compared with a genetic
algorithm that has the most similarity with the proposed BBO.
This similarity causes the impact of different neighborhood
structures being minimized and the differences among the
algorithms being just due to their search quality. Finally, to
evaluate the distinctions of the two algorithms much more
elaborately, they are implemented on three different objective
functions named makespan, critical machine work load, and
total work load ofmachines. BBO is also compared with some
famous algorithms in the literature.
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1 Introduction

Flexible job shop scheduling problem (FJSP) as a branch of
production planning problems is a modified version of job
shop scheduling problem (JSP) [1]. In JSP, operations can
be processed on a predetermined and fixed processing order
through all machines. However, in FJSP, this assumption is
released and an operation is allowed to be processed by any
machine from a given set. FJSP is more complex than JSP
because of the additional need for determining the
assignment of operations to machines. Therefore, since
JSP belongs to the NP-hard class of problems, FJSP as a
more complicated problem is also categorized in this class.

FJSP, to minimize a predefined objective, faces two main
difficulties, including (1) assigning each operation to a
machine and (2) scheduling the assigned operations of each
machine. Therefore, two sub-problems can be considered
for FJSP, which are called (1) machine assignment sub-
problem and (2) operation sequencing sub-problem.

For solving a FJSP, some studies considered these two sub-
problems separately. This approach, which is named hierar-
chical approach, divides a hard problem into two simpler sub-
problems. Brandimarte [2] solved an operation sequence sub-
problem by using some dispatching rules and solved the
machine assignment sub-problem through a tabu search (TS)
algorithm. The TS algorithm was also used by Barnes and
Chambers [3] in their hierarchical approach. Xia and Wu [4]
used simulated annealing for operation sequence and particle
swarm optimization (PSO) for the machine assignment sub-
problem within a multi-objective FJSP.

On the other hand, more studies consider this two sub-
problems simultaneously and solve FJSP through an
integrated approach. Generally, integrated approaches are
more complicated, but result in better solutions. Hurink et
al. [5] and Scrich et al. [6], in their integrated approach,
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used the TS algorithm for solving FJSP. Chen et al. [7]
proposed a genetic algorithm (GA) with a special type of
chromosome in which for each sub-problem of the FJSP a
separate vector was considered. It means that their chromo-
some consisted of two vectors including the machine
assignment vector and the operation sequence vector. Mas-
trolilli and Gambardella [8] proposed two neighborhood
structures in their TS technique. TS was also used by Saidi-
Mehrabad and Fattahi [9]. Kacem et al. [10–12] studied
single- and multi-objective FJSP based on the localization
approach. Mati et al. [13] developed a greedy algorithm for
FJSP. Ho et al. [14] proposed a learnable GA for FJSP. Gao et
al. [15] developed a hybrid genetic algorithm to solve multi-
objective FJSP. Gao et al. [16] developed the general PSO
algorithm for solving FJSP. Zhang et al. [17] developed an
algorithm called VNGA in which a variable neighborhood
search algorithm as a local search is used for improving the
quality of the GA’s solutions. Zhang et al. [18], to deal with a
multi-objective FJSP (MOFJSP), proposed a hybrid version
of the PSO algorithm in which TS algorithm is used as local
search. Zhang et al. [19, 20] developed a combination of TS
with GA and variable neighborhood genetic algorithm for
solving MOFJSP, respectively. They [21] also developed an
effective GA (eGA) with a special initialization method.
Their algorithm reached most of the best solutions that were
found in the literature and also improved some of them.
Wang et al. [22] proposed a multi-objective GA which
utilizes entropy and immune concept for MOFJSP.

Biogeography-based optimization (BBO) algorithm, such
as GA or PSO algorithm, is a naturally inspired algorithm in
which the migration strategy of species is used for solving
engineering problems. Biogeography science can be referred
to the studies of two naturalists named Alfred Wallace [23]
and Charles Darwin [24]. Robert MacArthur and Edward
Wilson [25] started a mathematical modeling of biogeogra-
phy in 1960 and introduced it as an important area of
research. These types of mathematical models represent how
species migrate among different islands, how new species
arise, and how species become extinct. In the literature of
biogeography, an island is referred to as any habitat that is
geographically isolated from other habitats. It should be
mentioned that in this paper, island and habitat are
considered the same. Although BBO is a naturally inspired
algorithm, it has some fundamental distinctions from
common natural algorithms such as GA, PSO, or ant colony
optimization. In BBO, the initial population is not discarded
among different generations. Instead, the migration concept
is used to modify the population. As another distinction, in
each generation, the fitness function is not used directly to
modify the population, and BBO used fitness to determine
the immigration and emigration rates.

BBO was firstly presented by Simon [26] for solving
engineering problems. In his first paper, Simon introduced

the main idea, definitions, and steps of BBO and proved its
good performance. Since then, many researchers have used
BBO in their studies. In his next paper, Simon [27]
introduced his algorithm much more simply by means of a
simple version of BBO and analyzed its population by
means of probability theory. Then, he showed how a BBO
with a low mutation rate outperforms GA with a low
mutation rate. Du et al. [28] improved the BBO’s perfor-
mance by inserting distinctive features of other heuristic
algorithms into the BBO. Ergezer et al. [29], by using
opposition-based learning (OBL) alongside BBO’s migration
rates, proposed a new version of BBO which is called
oppositional BBO. They mathematically proved that among
all OBL methods, their algorithm has the highest expected
probability to get close to the problem’s solution. Ma and
Chen [30] explored the performance of six migration models
on BBO by generalizing the equilibrium species count of
biogeography theory and showed that the sinusoidal migra-
tion model outperforms other models. Ma and Simon [31]
proposed a new blended crossover and mutation operator in
which a solution is adapted by a linear combination of itself
with another solution. They also developed their blended
BBO for constrained problems. BBO has also shown a good
performance on real-world optimization problems such as
classification of satellite images [32], groundwater resource
detection [33], or even on an economical problem to solve
the economic load dispatch problem [34].

In this paper, the BBO algorithm is developed and
introduced to scheduling area, especially for FJSP. To explain
the performance of this algorithm more explicitly, it is
compared with a newly developed genetic algorithm. In both
of these algorithms, we have tried to implement similar
neighborhood structures (taken from [22]) in order to minimize
the impact of neighborhood structures on the performance of
the algorithms. Therefore, different results of the algorithms
are just due to their search ability. In addition, since different
objectives can change the performance of the algorithms, our
algorithms are implemented for three common objective
functions, namely, makespan, critical machine work load,
and total work load of machines. Finally, this simple
biogeography-based algorithm, which is not a hybrid with
other algorithms nor included learning ability, is compared
with three famous algorithms [2, 14, 21] reported in the
literature to show which one of them [21] introduced the most
number of best solutions that have not been obtained until
now. The algorithms are tested on different classical problems
of FJSP and the results are presented.

The rest of the paper is organized as follows. In the next
section, classical FJSP is introduced. In Section 3, the
proposed BBO is developed. A similar GA is also explained
in this section. Section 4 presents and discusses computa-
tional results; finally, Section 5 concludes the paper and
suggests some future work opportunities.
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2 Problem definition

A FJSP is a scheduling model in which n jobs J (Ji, i ∈
{1,2,…,n}) are supposed to be processed on m machine M
(Mk, k ∈ {1,2,…,m}). For each job, one or more operations
(Oij, j ∈ {1,2,…,ni}) (where ni represents the total number
of operations for job Ji) can be considered. For each
operation of one specific job, a predetermined set of
capable machines is considered, and each operation (Oij)
of that job (Ji) can be processed by one machine out of its
set of capable machines (Mij). For job Ji, Pijk denotes the
processing time of operation j (Oij) on machine k.
Therefore, FJSP has two main goals, including assigning
each operation to a suitable machine and determining the
sequence of the assigned operation on each machine in
order to minimize common objective functions like maxi-
mal makespan (Cmax), critical machine work load (CWL),
or total work load (TWL) of machines. For more detail, Ho
et al. [14] can be consulted. The following assumptions are
also considered:

1. Operations of each job have a fixed and predetermined
order.

2. Jobs have the same priority.

3. There is no priority restriction among operations of
different jobs.

4. Jobs are released at time 0 and machines are available
at time 0.

5. Move time between operations and setup time of
machines are ignored.

6. At any specific time, only one job can be processed on
each machine.

7. During the process, operations cannot be broken off.

The FJSP, which consisted of three jobs and four
machines, is shown in Table 1. In Table 1, the numbers
present the processing times of operations on different
machines of their set of capable machines, and symbol “–”
means the operation cannot be processed on a corresponding
machine.

3 The proposed algorithm

3.1 Biogeography-based optimization

BBO is a new naturally inspired algorithm that is based on
biogeography science. Biogeography, as a subset of
biology, studies the distribution of species over space and
time [26, 27]. Simon [26] develops biogeography science
for solving optimization problems. BBO, just like GA or
PSO, is a population-based algorithm in which a population
of candidate solutions (individuals) is used for solving a
global optimization problem [26]. In GA, each chromo-
some is considered as an individual and has its fitness
value. Likewise, in BBO, each habitat is considered as an
individual and has its habitat suitability index (HSI) instead
of fitness value to show the degree of its goodness. High-
HSI habitat represents a good solution and low-HSI habitat
represents a poor solution. Solution features emigrate from
high-HSI habitats (emigrating habitat) to low-HSI habitats
(immigrating habitat). In other words, low-HSI habitats

BBO GA

1 Population-based Population-based

2 Habitat (individual) Chromosome (individual)

3 SIV Gen

4 Habitats consisted of SIV Chromosomes consisted of Gens

5 Mutation operator Mutation operator

6 Migration operators (immigration and emigration) Crossover operator

No reproduction Reproduction with Pre rate

7 Good solution is characterized by high HSI Good solution is characterized by high fitness

8 A good habitat is one which has
more diversity and species

A good chromosome is the one which
has more value of fitness function

9 No individual of initial population discard
during iterations but it is modified

Initial individuals can be discarded
by GA operators during iterations

Table 2 BBO’s definitions and
concepts vs. GA’s definitions
and concepts

Table 1 Example of FJSP with three jobs and four machines

FJSP Processing times

M1 M2 M3 M4

J1 O1,1 2 – 1 6

O1,2 5 3 – 2

O1,3 – 2 4 –

J2 O2,1 7 – – 11

O2,2 4 4 12 8

J3 O3,1 2 – 7 9

O3,2 3 5 8 1

O3,3 4 3 – 5
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accept a lot of new features from high-HSI habitats through
an immigration process. Therefore, the migration operators,
which are emigration and immigration, are used to improve
and evolve a solution to the optimization problem.
Generally, in an optimization problem like FJSP, the
objective function is considered as HSI and the evolution-
ary procedure of BBO is to determine those solutions which
maximize the HSI by using the immigration and emigration
features of the habitats.

Table 2 represents and redefines the extent of BBO on
FJSP. Meanwhile, since GA is considered as a popular
population-based algorithm, Table 2 compares BBO’s
characteristics with GA’s characteristics. The performance
comparison of these two algorithms is also considered to
explain BBO much more explicitly.

As is clear from Table 2, BBO has two main
operators, which are migration (including emigration
and immigration) and mutation. For implementing these
two operators, there are different options, but the one
option that is used for each of them is described in
Sections 3.1.4 and 3.1.5.

3.1.1 Initialization of the BBO algorithm

For initializing this algorithm, the method that Wang et al.
[22] proposed is used. In this approach, first, the operation
sequence is generated randomly, and then from the set of
capable machines, two machines are selected for each

operation. Finally, if a random generated number (Rand ∈
[0,1]) is <0.8, a machine with a shorter process time is
chosen; otherwise, a machine with a longer process time is
chosen.

3.1.2 Representing and decoding scheme of habitats

Although in this algorithm an individual is called habitat,
the performance and structure of an individual is just like
the chromosomes of GA. Consequently, we use a common
representation of the literature that Wang et al. used in their
GA [22]. This representation includes two vectors: one
vector used for representing the processing sequence of all
operations and another vector used for representing the
assignment of a suitable machine to each operation. The
integration of these two vectors creates a feasible solution
for FJSP. A scheme of this chromosome (according to
Table 1) is shown in Fig. 1. As can be seen in this figure,
the length of both vectors is the same as the number of all
operations of the jobs.

The sequence vector is a vector like [31231231]
(according to the example of presented in Table 1) in which
each number is repeated at equal times as the number of
related job operations. For example, since the first job has
three operations, number 1 is repeated three times that kth1
shows the placement of the kth operation of the first job.
Therefore, the corresponding sequence can be represented
as [O31, O11, O21, O32, O12, O22, O33, O13].

Fig. 2 Decoding Gantt chart for
the habitat of Fig. 1

Fig. 1 A two-vector habitat representation for three jobs, four machines, and eight operations for FJSP
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The assignment vector is a vector like [122-12-324]
(according to example of presented in Table 1) that shows the
assigned machine of each operation successively. It means that
the first three suitability index variable (SIV) show the as-
signed machines to operations of the first job successively, the
next part for the second job, and so on. Therefore, the as-
signed machines to each SIVof operation sequence vector is as:

O31;M3ð Þ; O11;M1

� �
; O21;M1ð Þ; O32;M2ð Þ;

O12;M2ð Þ; O22;M2ð Þ; O33;M4ð Þ; O13;M2ð Þ

" #
:

Each habitat should be transferred to a solution of the
problem during a process called decoding. For more notational
convenience, assume that each operation Oij (SIV) of the
habitat is denoted by OP. Then, its process and start time are
denoted by pOP and SOP respectively, and complementation
time can be calculated as SOP + pOP. Now, denoting job and
machine predecessor as JP and MP, respectively, the start time
of any new operation can be calculated as Eq. 1. Of course, it
is assumed that all jobs are started at time 0 and SOPJP andSOPMP

in the beginning are assumed as zero.

SOP ¼ max SOPJP þ POP
JP

� �
; SOPMP þ POP

MP

� �� � ð1Þ
The decoding process starts from the first SIV of the

operation sequence vector by assigning a corresponding
machine from the assignment vector to that operation. The
operation should be located in the earliest capable time of that
machine (which, for first operation, the earliest time is time 0).
For other SIVs or operations of the operation sequence vector
from left to right, a similar process is done, but locating the
operation on the earliest capable time of the corresponding
machine is in accordance with Eq. 1. Following this decoding
process, create an active schedule for each habitat or solution
of FJSP. The decoding process for the habitat of Fig. 1 is
done in Fig. 2 schematically with a Gantt chart.

3.1.3 Selection strategies

This step is one of the distinctive steps of BBO with other
algorithms, which is executed through two different

strategies, one for migration and one for mutation. Details
of these strategies are explained in the two next sub-
sections.

Selection strategies of migration To explain these strate-
gies, the first two new notations should be defined. These
two notations, which are denoted by li and μj, represent the
immigration and emigration rates, respectively. Now, the
solutions are selected for immigrating or emigrating
according to these two rates. Of course, it should be
noticed that these rates are explained in the next subsection
(Section 3.1.4) more completely.

According to the concept of the BBO algorithm, during
the migration process, we face two types of selection.
Firstly, we should determine whether a special habitat Hi

should be immigrated or not. To do so, a simple comparison
of li with a random number is done. Secondly, we should
select habitat Hj for emigrating to Hj. Details of the
selection algorithm for migration are shown in Fig. 3.

Selection strategies of mutation Figure 4 explains how the
mutation selection strategy is performed in the BBO
algorithm.

Fig. 5 Variation of the immigration and emigration rates for different
species abundance in a habitat [26]

Fig. 3 Selection strategy of the migration operator in the BBO
algorithm

Fig. 4 Selection strategy of the mutation operator in the BBO
algorithm
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3.1.4 Migration operator

Migration is a probabilistic operator that is used for modifying
each solution Hi by sharing features among different
solutions. The idea of a migration operator is based on the
migration in biogeography which shows the movement of
species among different habitats. Solution Hi is selected as
immigrating habitat with respect to its immigration rate li,
and solution Hj is selected as emigrating habitat with respect
to its emigration rate μj. It means that the probability that a
solution is selected for immigrating or emigrating depends
on its immigration rate li or emigration rate μj; the migration
process can be shown as:

Hi SIVð Þ  Hj SIVð Þ ð2Þ
The immigration rate li and emigration rate μj and the

species abundance of a habitat can be modeled as Fig. 5
(taken from [26]). As was mentioned, the features of high-HSI
solutions (good solutions) tend to emigrate to low-HSI
solutions (poor solutions). This tendency causes, by increasing
the species, as in Fig. 5, the immigration rate to decrease and
the emigration rate to increase. In this figure, E and I denote
the maximum of immigration and emigration rates, respec-
tively, Smax denotes the largest number of species that the
habitat can support, and S0 denotes the equilibrium point in
which the immigration rate and the emigration rate are equal.
Although in this figure the immigration and emigration are
considered linear, they can be replaced with other curves if
needed. It should be noticed that E and I are mostly set to 1.

Equation 2 shows how a feature or SIV of a solution is
adjusted with a feature or SIV of another solution through
migration operation. As mentioned in Table 1, a SIV shows a
feature of the solution (just like a gene in GA) and is used as a

search variable. Therefore, a set of all possible SIVs is
considered as the search space from which a solution is
determined.

After calculating the HSI for each solution Hi, the
immigration rate li and the emigration rate μj can be
evaluated as Eqs. 3 and 4, respectively. It means that these
two rates are the functions of fitness or HSI of the solution.
Since, according to the biogeography, the SIVs of a high-
HSI solution tend to emigrate to low-HSI solutions, a high-
HSI solution has a relatively high μj and low li, while in a
poor solution, a relatively low μj and a high li are expected.

li ¼ I 1� ki
n

� �
ð3Þ

mi ¼ E
ki
n

� �
ð4Þ

In Eqs. 3 and 4, ki represents the rank of the ith habitat after
sorting all habitats according to their HSIs and n represents
the size of the population. It is clear that since more HSI
represents a better solution, more ki represents the better
solution. Therefore, the 1th solution is the worst and the nth
solution is the best. Now, by calculating li and μj, the selection
strategy and migration operator are done as in Fig. 10.

Another parameter that needs to be calculated is the
probability of existence of S species in the habitat, which is
denoted by PS. This parameter is obtained through an
equation like Eq. 5 because to model changes from time t to
t + Δt, one of the three following states should happen:

1. S species at time t and this amount does not change
during [t,t + Δt].

2. S − 1 species at time t and one immigrating during
[t,t + Δt].

Fig. 6 IPOX operator for operation sequence migration [22]

Fig. 7 MPX operator for machine assignment migration [22]
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3. S + 1 species at time t and one emigrating during [t,t + Δt].

PS t þΔtð Þ ¼ PSðtÞ 1� lSΔt � mSΔtð Þ
þ PS�1lS�1Δt þ PSþ1mSþ1Δt ð5Þ

By solving Eq. 5 in a steady state, Pi is calculated as
Eq. 6 [26], where vi is a function of population size (n) and
formulated by Eq. 7. i′ in Eq. 7 is the smallest integer that is
greater than or equal to nðnþ1Þ

2 .

Pi ¼ viP
n
i¼1vi

ð6Þ

vi ¼
n!

nþ 1� ið Þ! i� 1ð Þ!i ¼ 1; 2; 3 . . . ; i0

vn þ 2� ii ¼ i0 þ 1 . . . ; nþ 1

8<
: ð7Þ

Now, according to what was mentioned, migration
operator should be done. To do so, after selecting the
immigrating and emigrating habitats, the migration operator
is done just like the crossover operator of GA. For
migrating our two-vector representation, two popular
crossover operators called improved precedence operation
crossover (IPOX) and multipoint preservative crossover
(MPX), developed by Zhang et al. [35] (taken from [22]),
are used for the operation sequence and machine assign-
ment, respectively. Whenever each of these operators is
processed, the other one is stopped. It means that when
MPX is processed on operation sequence, IPOX is
unchanged and vice versa. Figures 6 and 7 represent the
IPOX operator and the MPX operator, respectively, and
Figs. 8 and 9 illustrate these operators schematically.

3.1.5 Mutation operator

In BBO, mutation is a probabilistic operator which is used for
modifying one or more randomly selected SIVof a solution
based on its priori probability of existence Pi. In BBO, just
like GA, this operator is used for increasing diversity among
the population. In this algorithm, the mutation probability mi

is calculated according to the solution probability [26], as in
Eq. 8. Therefore, mutation probability and solution proba-
bility are proportioned inversely.

mi ¼ mmax 1� pi
pmax

� �
ð8Þ

Now, according to the mutation probability (mi), the
selection strategy and mutation operator can be done.
Again, for each vector of the habitat, a special mutation
operator is determined (taken from [22]). Figures 10, 11,
and 12 illustrate the mutation operator for both vectors of
each habitat.

3.1.6 Main algorithm of BBO algorithm

The main algorithm of the BBO is shown in Fig. 13.

3.2 The GA

As mentioned, to assess the performance of the proposed
BBO much more clearly, it is compared with a GA. To do
so, the operators of GA are considered just like the BBO’s
operator to minimize the impact of the different operators
on the performance of the algorithms. Therefore, in the

Fig. 9 MPX operator of the machine assignment vector

Fig. 8 IPOX operator of operation sequence vector for G1; {1} and G2: {2, 3}

Int J Adv Manuf Technol



proposed GA, the initialization method is the same as the
BBO, the crossover is like the migration of the BBO (MPX
and IPOX), and mutation structures are also the same. It is
worth reminding that their most difference is in their
selection strategies. In GA, the selection strategy is
tournament selection [22] in which two parents are selected
and a random number is generated (Rand ∈ [0,1]). If this
random number is <0.8, a better parent is selected;
otherwise, the worst parent is selected. It should be
mentioned that these two parents are not deleted from the
population and can be selected again as parents.

4 Computational results

In this section, we show how our non-equipped BBO
(without adding any hybrid algorithm or learning ability) is
comparable with three famous equipped algorithms named
TS by Brandimarte [2], learnable GA (LEGA) by HO et al.
[14], and eGA by Zhang et al. [21]. The algorithm of Zhang
et al. presents the most number of best solutions that have
been obtained in the literature and also improved some of
them. As mentioned, BBO is also compared with simple
GA that have most the similar operators with BBO (except
in selecting) to show the search quality of algorithms more
explicitly. Of course, since the algorithms differ by the
different fitness function, we compare these two algorithms
for different objectives including makespan, critical ma-
chine work load, and total work load of machines.
Comparison of BBO with the similar GA of the paper is
also done through some illustrations, which are plotted in
Fig. 14. The algorithms are tested on Kacem [10, 12],
Brandimart [2], and Barnes and Chamber [3] library. The
results are presented in Tables 3, 4, and 5 and Tables 6 and
7 in the Appendix and run in MATLAB on a PC with 4-GB
RAM and 2.4-GHz CPU. It should be noticed that for the

Kacem and Brandimart library, the population and iteration
size are set to 200 and for Barn library are set to 350 and
300, respectively. Besides, Pc = 85% (crossover rate) and
Pm = 10% (mutation rate).

Tables 3 and 4, which are related to the Brandimarte
library (BRdata) and Barnes and Chambers library (BCdata),
respectively, show how this simple version of BBO can
acquire solutions near or equal to the best solutions that have
been obtained in the literature by Zhang et al. [21].
Therefore, it is expected that by adding an immune operator,
improving the operator of BBO, or using any other way that
is used for making an algorithm more intelligent, the BBO
can easily reach higher quality solutions. Assessing this type
of improvement is one of our future works for this algorithm.
A comparison of BBO with other algorithms (Table 5) shows
that it is at least as good as Ho’s and Brandimart’s algorithm.
It means that our BBO outperforms Ho’s and Brandimarte’s
algorithms on their whole tested library. In these tables, the
following notations are used:

n Number of jobs
m Number of machine types
Flex Average number of equivalent machines per

operation
LB Lower bound for the problem
Cmax Best solution for makespan
Av
(Cmax)

Average of the solution for makespan

t Average of the complementation times
(roundup time)

T0 Total number of operations

Tables 6 and 7 in the Appendix and Fig. 14 compare
the proposed BBO with a newly proposed GA in which
neighborhood structures are designed like the BBO’s
neighborhood structures. To do so, the migration strategy
of BBO and the crossover operator of GA is designed

Fig. 10 Steps of mutation for each chosen habitat [22]

Fig. 11 Scheme of mutation operator of the operation sequence vector
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similarly. The mutation operators of both algorithms are
also designed similarly. Therefore, the impact of the
different operators of the two algorithms is extremely
minimized, and most of the differences in the results of the
two algorithms are just due to their different search
process. On the other hand, since our algorithms are
programmed in MATLAB, this comparison is vital. In this
way, we can compare the BBO with a well-known
algorithm (GA) in a similar situation. Table 6 in the
Appendix compares these two algorithms according to the
value of three different objective functions. In this table,
every three rows belongs to one specific test problem in
which the first, second, and third rows present the results
of algorithms for makespan (Cmax), TWL of machines, and
CWL, respectively. The last two columns of the table
(named Count) count the amount of being better for the
three criteria (minimum, average, and maximum). For
instance, in MK01, the BBO at one criterion is better (the

average of obtained results). In Table 6 in the Appendix,
two algorithms are completely comparable. However, in
Table 7 in the Appendix, which is designed like Table 6 (in
the Appendix), but for the computational time of the
algorithms, the BBO proves itself clearly, and although the
effectiveness of the algorithms is very similar as in Table 6
(in the Appendix), the BBO shows better efficiency in
Table 7 (in the Appendix). Figure 14, for the three
different objective functions on the test problem 15*10
of Kacem, presents the performance of the two algorithms
simultaneously and schematically. In Fig. 14, for each
algorithm, two curves are plotted, one figure for best of
the objective function (vs. time) and one figure for average
of the objective function (vs. time).

It is worth mentioning that all operators of our BBO or
GA are designed like the algorithm of Wang et al. [22]. On
the other hand, their algorithm is a multi-objective GA
which implemented the entropy and immune concept.

Fig. 13 Main algorithm of the BBO

Fig. 12 Scheme of mutation operator for the machine assignment vector
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Table 3 Results of Brandimart library (BRdata)

Problem n × m T0 Flex. LB eGA Proposed BBO

Pop Cmax Av(Cmax) t(C++) Pop Cmax Av(Cmax) t(Matlab)

MK01 10*6 58 2.09 36 100 40 40 1.6 200 40 41 121

MK02 10*6 150 4.10 24 300 26 26 2.6 200 28 28.25 123

MK03 15*8 90 3.01 48 50 204 204 1.3 200 204 204 441

MK04 15*8 106 1.91 204 100 60 60 6.2 200 64 66 242

MK05 15*4 150 1.71 168 200 173 173 7.3 200 173 173.5 209

MK06 10*15 100 3.27 33 200 58 58 15.7 200 66 66.5 411

MK07 20*5 225 2.83 133 200 144 145 17.3 200 144 144.25 196

MK08 20*10 240 1.43 523 50 523 523 2.2 200 523 523 452

MK09 20*10 240 2.53 299 300 307 307 30.2 200 310 310.75 653

MK10 20*15 58 2.98 165 300 198 199 36.6 200 230 232.75 709

Fig. 14 Proposed BBO vs. the proposed GAwith 200 population size and generation for 10*15 of Kacem
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Besides, according to the results, our BBO’s times are
generally less than our GA’s times. Therefore, the times
used by Wang et al. can be considered as some samples for
the upper bounds of our times if our algorithm was
programmed in C++.

5 Conclusion and future works

During the last decades, for solving optimization prob-
lems, different new types of algorithm have been
developed. Most of them are inspired by natural
phenomena like the genetic mechanism of our body, or
manner of ant, fish, or bee. This paper introduced a new
naturally inspired algorithm to scheduling area in which
biogeography theories are used for solving optimization
problems. To do so, we adjusted the operators of the
biogeography-based algorithm (BBO) including migra-
tion and mutation for flexible job shop scheduling
problem. Then, we compared it with a newly developed
GA, which has similar operators, for three different
objectives. Finally, BBO was compared by three famous
algorithms reported in the literature. In all of the assessments,
our simple and non-equipped BBO shows a good perfor-
mance. In comparison with a similar GA of the paper, the
BBO was completely comparable; in comparison with three
other famous algorithms, the BBO’s best solution is at least as
good as the LEGA of Ho et al. and the TS of Brandimart, and
equal or nearly equal to the eGA of Zhang et al. (which
introduced the most number of best solutions of the
literature). Therefore, according to the results, BBO can
be introduced as a capable algorithm for FJSP that

Table 4 Results of Barnes and Chamber library (BCdata)

Problem n × m T0 Flex. LB eGA Proposed BBO

Pop Cmax Av(Cmax) t(C++) Pop Cmax Av(Cmax) t(Matlab)

mt10c1 10*11 100 1.1 655 200 927 928 23.25 350 946 947 401

mt10cc 10*12 100 1.2 655 200 910 910 19.27 350 946 946 405

mt10x 10*11 100 1.1 655 1,000 918 918 21.45 350 955 961 416

mt10xx 10*12 100 1.2 655 1,000 918 918 20.38 350 939 945 480

mt10xxx 10*13 100 1.3 655 1,000 918 918 25.39 350 954 954.5 497

mt10xy 10*12 100 1.2 655 300 905 906 24.37 350 951 951 458

mt10xyz 10*13 100 1.3 655 1,000 847 847 30.24 350 858 858 495

setb4c9 15*11 150 1.1 857 1,000 914 914 12.81 350 959 959 762

setb4cc 15*12 150 1.2 857 1,000 909 910 20.16 350 944 950 770

setb4x 15*11 150 1.1 846 200 925 925 8.92 350 942 951 749

setb4xx 15*12 150 1.2 847 300 925 925 54.06 350 967 967 761

setb4xxx 15*13 150 1.3 846 1,000 925 925 62.81 350 991 991 797

setb4xy 15*12 150 1.2 845 1,000 916 916 27.78 350 978 982 778

setb4xyz 15*13 150 1.3 838 1,000 905 908.1 40.26 350 930 930.5 651

seti5c12 15*16 225 1.07 1,027 1,000 1,174 1,174 70.69 350 1,198 1,202 1,460

seti5cc 15*17 225 1.13 955 1,000 1,136 1136.2 69.53 350 1,199 1202.5 1,370

seti5x 15*16 225 1.07 955 1,000 1,209 1,209 67.56 350 1,249 1,254 1,382

seti5xx 15*17 225 1.13 955 1,000 1,204 1,204 78.29 350 1,266 1,273 1,429

seti5xxx 15*18 225 1.2 955 1,000 1,204 1,204 105.25 350 1,227 1,228 1,415

seti5xy 15*17 225 1.13 955 1,000 1,136 1136.3 70.47 350 1,170 1,195 1,419

seti5xyz 15*18 225 1.2 955 1,000 1,125 1126.5 70.56 350 1,175 1180.5 1,391

Table 5 Computational results on Kacem and Brandimart data for
makespan (Cmax)

Proposed BBO Ho [14] Brandimart [2]

Kacem 4*5 11 11 –

8*8 14 – –

10*10 7 7 –

10*15 12 12 –

Brandimart MK01 40 40 42

MK02 28 29 32

MK03 204 - 204

MK04 66 67 81

MK05 173 176 186

MK06 64 67 86

MK07 144 147 157

MK08 523 523 523

MK09 310 320 369

MK10 230 229 269
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should be studied more to obtain better results from its
potential capabilities in scheduling or other types of
optimization problems.

Different development can still be considered for this
algorithm, including:

– Developing BBO for other scheduling problems such
as flow shop, job shop, open shop, etc.

– Adding a learning ability to BBO and creating a
knowledge-based BBO (KNBBO)

– Proposing a hybrid version of BBO for solving
different scheduling problems

– Combining BBO with local search to create immune
BBO

– Improving BBO’s functions, for example by considering
nonlinear curves for immigration and emigration rates

– Developing a fuzzy version of BBO through fuzzy
fitness or fuzzy process time

– Developing a multi-objective BBO for scheduling
problems or even other optimization problems

Appendix

Table 6 Comparing the different objective functions of GA and BBO

Proposed GA Proposed BBO Count

Min Ave. Max Min Ave. Max GA BBO

4*5 Cmax 11 11 11 11 11 11 – –

TWL 32 32 32 32 32 32 – –

CWL 7 7.5 8 8 8 8 2 –

8*8 Cmax 15 15.5 16 14 14.75 15 – 3

TWL 73 73 73 73 73 73 – –

CWL 13 13.25 14 11 11.4 12 – 3

10*10 Cmax 7 7.75 8 7 7.75 8 – –

TWL 43 44 45 43 43.25 44 – 2

CWL 6 6.5 8 5 5.25 8 – 2

10*15 Cmax 14 14.25 15 13 13 13 – 3

TWL 91 91 91 91 91 91 – –

CWL 14 15.25 16 12 12.75 14 – 3

Mk01 Cmax 40 41.5 42 40 41 42 – 1

TWL 153 153 153 153 153 153 – –

CWL 36 36 36 36 36 36 – –

Mk02 Cmax 28 28.25 29 28 28.25 29 – –

TWL 140 140 140 140 140 140 – –

CWL 26 26 26 26 26 26 – –

Mk03 Cmax 204 204 204 204 204 204 – –

TWL 812 812 812 813 813.25 814 3 –

CWL 204 204 204 204 204 204 – –

Mk04 Cmax 64 64.75 65 64 66 67 2 –

TWL 324 324 324 324 324 324 – –

CWL 60 60 60 60 60 60 – –

Mk05 Cmax 173 173.5 175 173 173.5 175 – –

TWL 272 272 272 272 272 272 – –

CWL 173 173 173 173 173 173 – –

Mk06 Cmax 64 65.5 67 66 66.5 67 3 –

TWL 330 330 330 330 330 330 – –

CWL 54 54 54 54 54 54 – –

Mk07 Cmax 143 143.75 144 144 144.25 145 3 –

TWL 649 649 649 649 649 649 – –

CWL 141 142.75 144 140 140.5 141 – 3
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Table 6 (continued)

Proposed GA Proposed BBO Count

Min Ave. Max Min Ave. Max GA BBO

Mk08 Cmax 523 523 523 523 523 523 – –

TWL 2,484 2,484 2,484 2,284 2,284 2,284 – –

CWL 523 523 523 523 523 523 – –

Mk09 Cmax 307 310 311 310 310.75 311 3 –

TWL 2,210 2210.5 2,211 2,210 2210.25 2,211 – 1

CWL 299 299 299 299 299 299 – –

Mk10 Cmax 220 220.25 221 230 232.75 236 3 –

TWL 1,847 1,847 1,847 1,847 1,847 1,847 – –

CWL 197 197.5 199 197 198.25 199 1 –

Sum 20 21

Table 7 Comparing the computational time of the proposed GA and BBO

Proposed GA Proposed BBO Count

Min Ave. Max Min Ave. Max GA BBO

4*5 Cmax 55 57.75 66 34 40.5 47 – 3

TWL 43 44.25 46 41 42.5 44 – 3

CWL 48 49 51 37 38.75 41 – 3

8*8 Cmax 148 168.75 177 145 150.75 156 – 3

TWL 63 79 88 59 79 92 – 3

CWL 44 45.25 47 38 38.5 40 – 3

10*10 Cmax 79 88 99 84 87 91 3 –

TWL 64 68.4 78 51 59.8 69 – 3

CWL 36 43.6 56 41 44.8 57 3 –

10*15 Cmax 63 93.25 121 61 85 109 – 3

TWL 117 123 177 116 117.75 165 – 3

CWL 117 127.75 159 115 121.5 143 – 3

Mk01 Cmax 136 138.75 141 118 121.5 126 – 3

TWL 108 117.25 140 105 127 156 – 3

CWL 60 84.5 138 52 59.75 78 – 3

Mk02 Cmax 123 127.25 133 117 123.5 137 – 3

TWL 129 137 142 106 117.75 133 – 3

CWL 61 81.75 135 56 77.5 125 – 3

Mk03 Cmax 285 426.5 659 287 441.75 630 3 –

TWL 230 295.5 335 291 378.75 450 3 –

CWL 129 217 307 130 205.25 285 3 –

Mk04 Cmax 169 236.25 348 162 242 361 – 3

TWL 187 261.25 338 191 242.5 364 3 –

CWL 84 132.25 206 79 105 178 – 3

Mk05 Cmax 183 262 342 178 209.5 238 – 3

TWL 209 215.75 224 192 215 247 – 3

CWL 95 162 224 90 147 206 – 3

Mk06 Cmax 281 357.25 463 359 410 464 3 –

TWL 229 301 337 219 331.25 435 – 3
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